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Figure 1: Investigating brain patterns of mental states across multiple virtual reality (VR) learning sessions. Two approaches are
introduced, (1) left side: a group-level statistic with a linear mixed-effects (LMM) model and (2) right side: a decoding approach
using machine learning (ML). In both approaches, model coefficients were visualized on the cortical surface of a 3D brain image
to identify informative patterns distinguishing between low and high working memory load.
ABSTRACT
User-aware adaptive systems can greatly benefit from brain-computer
interface (BCI) technologies. BCIs allow continuous monitoring of
users’ mental states and tailoring of the system to their individual
skills and needs. We conducted a feasibility study integrating a BCI
using functional near-infrared spectroscopy (fNIRS) into a virtual
reality (VR) environment for realistic industrial learning scenarios.
Using a fNIRS-based BCI allowed us to a) identify learning progress
of individuals based on their working memory load across multiple
learning sessions and b) investigate the underlying brain patterns.
Our results showed a non-linear relationship between task diffi-
culty and brain responses in the prefrontal cortex (PFC). Finally, we
were able to draw four major conclusions regarding architecture
components and vital research perspectives, to progress towards a
vision of user-aware adaptive system design.
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1 INTRODUCTION
Nowadays, with steadily changing skill requirements and the re-
sulting need for re-skilling employees, suitable learning scenarios
and environments for training are essential for companies to re-
main competitive and ensure job satisfaction. Concurrently, virtual
reality (VR) has become a revolutionary key technology to create
immersive and engaging learning experiences [42]. It not only al-
lows exploring possible actions and visualizing consequences in a
secure and cost-effective setting, but also enables for customization
of the learning environment (e.g., content, speed, and/or format) to
suit the particular skills and needs of the user [22, 42].
Despite the advances in innovative human-computer interaction
(HCI) technologies towards taking into account contextual and
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environmental settings [10, 25, 36, 39], there remains a lack of
knowledge into user preferences, cognitive skills and abilities. To
provide an optimal learning experience, user-aware adaptive sys-
tems need to be developed that also incorporate the user’s current
mental state [61, 62]. Insights from educational psychology sug-
gest that an optimal fit between task requirements and learning
environment with the user’s competencies and needs leads to high
self-motivation, engagement, and, therefore, better learning perfor-
mance [50, 64].
Technologies that promote users in achieving their goals hold po-
tential for significantly improving personalized learning. One key
challenge for the development of such user-aware adaptive systems
lies in the continuous and robust monitoring of mental states. To
unobtrusively monitor a user’s mental state, easy-to-use wearable
electroencephalography (EEG), or functional near-infrared spec-
troscopy (fNIRS) devices appear to be well suited [5, 14, 38, 49, 60].
In recent years, there have been significant strides in gaining in-
sight into the brain functions in cognitive processes during driving
[19, 45], learning [53, 63], and other outdoor activities [8, 43, 48, 68].
The introduction of passive brain-computer interfaces (BCI) [66]
as a new concept for HCI laid the groundwork for combining neu-
rotechnologies with context-aware systems, thus, facilitating the
development of user-aware adaptive systems [5, 10, 61]. Passive
BCI technologies are continuously monitoring brain processes in
order to a) infer the user’s current cognitive or emotional states
[5, 10, 32] and b) maintain a conceptual representation of the user.
EEG is currently the most commonly used technology for integrat-
ing passive BCI into mobile VR environments [28, 38, 49]. Only
few attempts have been made to utilize fNIRS [21, 47], which is an
optical brain imaging technique measuring metabolic changes in
the concentrations of local oxygenated (HbO) and deoxygenated
hemoglobin (HbR; [15]). When compared to EEG, fNIRS has the
advantage of being less susceptible to movement-induced artifacts
[21, 40, 47, 54] and providing a high spatial resolution, which allows
for the localization of brain regions involved in cognitive functions
[52, 57].
In this work, we are introducing a new experimental paradigm in
VR that enables us to study users’ learning progress in a realistic
industrial task. The goal is to explore the potential of utilizing fNIRS
signals to detect changes in working memory load across multiple
sessions, and gain insights which help customizing fNIRS-based
passive BCI for user-adaptive learning systems. We contribute to
the existing research by (1) presenting an architecture called NIR-
cademy for integrating fNIRS-based passive BCI into a VR
learning environment that enables training for realistic indus-
trial scenarios; and (2) investigating informative brain activation
patterns with fNIRS that can be used to decode different working
memory levels across multiple learning sessions.

2 RELATEDWORK
Various cognitive processes are involved during learning, qualify-
ing them as insightful candidates to be monitored. Workload or
visuospatial working memory load, that is the ability to process,
store, and update information on visual properties and current
location of an object [34], is one of the most intensively studied
cognitive processes in HCI [5, 40, 47, 55] and of particular interest
for learning [40].

In the past, mobile EEG was predominately used to monitor work-
ing memory load [2, 12, 55] as well as further cognitive processes
in VR scenarios [28, 32]. For instance, for stress detection in off-
shore environments [1], stress and workload recognition among
crew members in maritime simulations [30], and in construction
safety training [24]. However, fNIRS is gaining more and more
importance for everyday world applications (e.g., [9, 44, 56, 58, 60]).
In fNIRS studies, various areas of the prefrontal cortex, especially
dorsolateral and ventrolateral parts, are identified as key regions
for working memory load [3, 31]. When working memory load is
experienced, an increase of the local HbO and a decrease of the
HbR concentration [15] can be observed in both regions [21, 35].
Current research utilizing fNIRS-based BCI in VR [21, 47] focuses
primarily on the decoding of mental states within a single session.
Furthermore, there are only few studies integrating fNIRS-based
BCI in naturalistic VR-HCI applications (e.g., in industrial high-risk
shutdown maintenance training [51]). Investigation into modula-
tions of the brain activation patterns underlying user’s learning
progress amongmultiple sessions is scarce. Additionally, major com-
ponents necessary for the development of user-aware BCI-based
VR learning environments including online decoding of mental
states and design concepts to adapt VR learning environments are
rarely addressed in the existing literature.

Our feasibility study aims to close some of these gaps by a)
introducing a new experimental paradigm for industrial learning
scenarios in VR, and b) investigating visuospatial working memory
load, state decoding, and themodulation of brain activation patterns
across multiple sessions.

3 NIRCADEMY - A NEW EXPERIMENTAL
PARADIGM USING FNIRS IN INDUSTRIAL
VR LEARNING SCENARIOS

NIRcademy is based on an existing VR learning environment called
VRcademy and extends it by integrating fNIRS-based BCI. Using
pre-existing 3D data, VRcademy allows developers and end-users
to create step-by-step VR training lessons for various industrial
tasks (e.g., assembly or disassembly of machines; [6]). Here, we
designed a learning scenario from an electrical engineering context.
Participants had to learn the order and positioning of electrical
components to be installed in a switch cabinet. This naturalistic
task, thus, required visuospatial working memory and allowed
systematic scaling of task difficulty. Each learning unit was divided
into four phases (see Figure 2):

(1) A baseline phase lasting 30 sec in which participants fixated
a cross-hair in the center of their visual field. Within these
30 seconds, fNIRS HbO and HbR concentrations recovered
to resting state levels.

(2) A training phase in which participants received step-by-
step visual instructions on where to put which components
in the switch cabinet. The target component and position
were highlighted in each trial. In the first time point, partici-
pants had no time limits to memorize each electrical compo-
nent and follow the instruction. In the second and third time
point, time was limited to 15 sec per component in order to
further increase task difficulty and avoid ceiling effects in
the test phase.
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(3) A memorize phase lasting 30 sec in which participants
fixated a cross-hair in the center of their visual field and
were instructed to mentally repeat the learned sequence.
The length of the memorize phase was set to be similar to
the baseline phase in order to guarantee the recovery of
fNIRS HbO and HbR concentrations to resting state levels,
and facilitate comparison between a pre- and post-learning
phase (this analysis is beyond the scope of this work).

(4) A test phase in which participants had to perform the in-
stallation of each component within 7 sec based on the pre-
viously learned and memorized sequence.

Figure 2: Experimental procedure of the feasibility study
with four different task phases and three learning sessions
(time point (TP) 1 - 3). Items: to-be-installed electrical com-
ponents. During the guided training phase, target electrical
components and positions were highlighted. LW: low work-
ing memory load (blue), HW: high working memory load
(red).

To induce different working memory load levels, we manipulated
task difficulty by varying the number of components to be memo-
rized across learning sessions. In the first session, participants had
to memorize three electrical components in the low and seven com-
ponents in the high working memory load condition. In the second
and third sessions, participants had to memorize five components
in the low and nine components in the high load condition (Figure
2). The choice of memorizable items was based on preliminary tests
aiming to identify two distinguishable difficulty levels [26, 35, 37]
while avoiding under- and overload [35]. Every session comprised
8 learning units per condition and lasted approximately 90 min.
After each learning unit, participants rated the perceived effort and
frustration using an adapted version of the NASA Task Load Index
[18] as well as perceived stress with a slider ranging from 0 (low)
to 100 (high).

3.1 Participants
11 volunteers (five female, mean age = 27.9, SD = 3.02, range = 24–34
years) participated in the NIRcademy experiment with nine of the
participants completing all three sessions (see Figure 2). They were
screened using an online survey for sufficient knowledge of German,
intact color vision, and no self-reported drug additions as well as
mental, neurological, or cardiovascular diseases. All participants
received monetary compensation for participation and signed an
informed consent. The study was approved by the local ethics
committee (𝐼𝐷 : 827/2020𝐵𝑂1).

3.2 Hardware and Software Components
Hardware: The integration of a mobile fNIRS system into VR re-
quires some considerations: (1) Infrared light emitted by the VR
equipment can interfere with the infrared signal used by fNIRS. (2)
there is a trade-off between a well-covered fNIRS sensor placement
and stable head-mounted display (HMD) attachment. Preparatory
testing for potential interference revealed that the first and sec-
ond generation Lighthouse base stations commonly found with
Valve and HTC Vive TM HMDs can affect the fNIRS signal quality.
Furthermore, Oculus HMDs were evaluated as less suitable due
to infrared light-based controller tracking. We finally decided to
choose the Windows Mixed Reality device HP Reverb G1 with con-
trollers using visible light for positional tracking. The HP Reverb
G1 has a per-eye resolution of 2048 x 2048 pixels, refresh rate of 90
Hz, and smaller head strap compared to later models allowing for a
good fNIRS sensor coverage. Since the HP Reverb G1 still features
an infrared LED and sensor, we disabled it and configured the HMD
without it. Brain activity was recorded using the NIRSport2 System
and Aurora software at a sampling rate of 5.8 Hz (NIRx Medical
Technologies, LLC). The placement of the sensors was chosen to
optimally cover lateral parts of prefrontal cortex which is associated
with working memory [3, 31] (Figure 3).

Figure 3: A) Sensor placement including 15 sources (red cir-
cles), 14 detectors (blue circles), and 8 short channels (blue
ring around source) covering the prefrontal cortex. rdlPFC:
right dorsolateral prefrontal cortex; ldlPFC: left dorsolateral
prefrontal cortex. B) 3D illustration of the sensor placement.

Software: The VR learning environment was implemented using
the Unity game engine. Analogous to the chosen HMD, the program
ran at 90 Hz. The experimental software architecture consisted of
three interconnected programs synchronized via Lab Streaming
Layer [29]:

(1) the experimental paradigm NIRcademy,
(2) the acquisition software Aurora, and
(3) a Python script to orchestrate data streams, save recorded

data, and provide an environment for online state decoding.
Additionally, after completion of each trial, the NIRcademy program
sent behavioral data as well as meta information to the Python
recording software.

3.3 Signal Processing and Machine Learning
Recorded fNIRS signals were analyzed offline using MNE-Python
[17] and MNE-NIRS [33]. Following guidelines by Yücel et al. [65],
signals were first converted to optical density [17, 33]. Next, bad
channels were rejected using the scalp-coupling index as a quality
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measure for each channel. A threshold of below 0.5 was applied to
exclude bad channels from further analyses and a temporal deriva-
tive distribution repair was performed to account for baseline shifts
and spike artifacts [16]. To obtain HbO and HbR concentration
changes (`M), optical density was transformed using the modified
Beer-Lambert law [33, 65] and a partial path-length factor of 6 [17].
A fourth-order zero-phase infinite impulse response (IIR) Butter-
worth band-pass filter was applied with cutoff frequencies of 0.05
and 0.7 Hz and transition bandwidth of 0.02 and 0.2 Hz.
From a theoretical point of view, HbO and HbR concentration
changes are proposed to be highly correlated [15, 65], motivat-
ing researchers to confine analyses to one chromophore, mostly
HbO [59]. We also excluded HbR signals to analyze HbO in depth
as a first step.

Group-level Statistic of Working Memory Load Levels: For
the comparison of working memory load levels during the test
phase, we calculated forward models [20] from evoked hemody-
namic signals using generalized linear models (GLM) [59, 65]. For
the hemodynamic response function estimation, we used a prede-
fined canonical statistical parametric map hemodynamic response
function generated from a linear combination of two Gamma func-
tions [33, 59]. A third-order polynomial drift as well as signals from
short channels were included as GLM regressors in order to sep-
arate systemic signals from task-related brain activity [65]. Thus,
individual estimates of evoked hemodynamic brain activity were
obtained for each experimental condition, channel, and participant.
In the next step, the contrast ℎ𝑖𝑔ℎ – 𝑙𝑜𝑤 load was calculated, and
group-level statistics using a linear mixed-effects model (LMM)
were performed [33] using the R packages lme4 [4].
For the LMM statistics, missing values and outliers exceeding 1.5 of
the interquartile rangewere removed and coefficients z-standardized.
The LMM included fixed effects of condition, source-detector-pairs,
and chromophore (HbO or HbR) while accounting for participant
as random effect [33]. Computed estimates were determined as
significant based on the Bonferroni-corrected confidence interval
using the number of channels to account for multiple comparisons.
Significant Bonferroni-corrected coefficients were projected on the
cortical surface of a 3D brain image.
Group-level Decoding from Machine Learning Models: We
used a linear multivariate classifier and calculate backward mod-
els [20] to discriminate the different load levels. Linear models
like a linear discriminant analysis (LDA) allow for an interpreta-
tion of model coefficients and comparison to the forward model
[20]. The feature set comprised the average HbO concentration
changes per channel from epochs of 4 sec during the test phase.
We rejected epochs exceeding 80 `M in their peak-to-peak value.
We performed the decoding using on average within one partici-
pant 𝑇𝑃1𝑀 = 75.00, (𝑆𝐷 = 15.00) epochs in the first session, 𝑇𝑃2
𝑀 = 108.00, (𝑆𝐷 = 13.97) epochs in the second session, and 𝑇𝑃3
𝑀 = 111.56, (𝑆𝐷 = 1.33) epochs in the third session. 2651 epochs
could be extracted from the signals in total (aggregated across par-
ticipants and sessions).
A LDAwas applied participant-wise in a nested 5-fold cross-validation
with 20 repetitions (implemented using [41]). Features were z-
standardized and the hyperparameter solver was optimized using a
grid search. Model performance was evaluated using the area under
the receiver operating characteristic curve (AUC-ROC). Average

performance and its 2.5th and 97.5th confidence interval were esti-
mated using non-parametric bootstrapping (5000 iterations) over
the cross-validation folds of one participant and session. The aver-
age performance and confidence intervals were then compared to an
empirical chance level (i.e, a dummy classifier, [41]). A dummy clas-
sifier provides an empirical chance level by generating predictions
according to the class distribution in the training set. The dummy
classifier was trained participant- and session-wise. However, its
mean and CIs were estimated via bootstrapping using the cross-
validation folds of all participants and sessions. The classifier’s
feature coefficients were extracted and averaged among partici-
pants, then projected onto a 3D brain image’s cortical surface for
comparison to the LMM coefficients.

4 RESULTS
Group-level Statistic of Working Memory Load Levels: Re-
sults from the group-level statistic (Figure 4, A) revealed a strong
involvement of right frontopolar regions as well as the dorsolateral
prefrontal cortex in the high compared to the low load condition
during the first session (Figure 4, A, upper row, left). Additionally,
HbO concentration was reduced in the left and partially right motor
cortex. Especially in areas associated with right hand and facial mus-
cle activity. Interestingly, strong involvement of the right prefrontal
cortex observed during the first session was not found during the
second and third session (Figure 4, A, middle and lower row, left).
There were only marginal differences in the involvement of the
dorsolateral prefrontal cortex between the two load conditions in
the two latter session (Figure 4, A, middle and lower row). In the
second session, posterior parts of the right dorsolateral prefrontal
cortex including areas of the premotor cortex were even less in-
volved during high compared to low working memory, as reflected
in lower local HbO concentration during the high load condition
(Figure 4, A, middle row, right). Although task difficulty was kept
stable in the second and third session, we observed a modulation
in the brain activation patterns across sessions (Figure 4, A, middle
and lower row). In the second session, high working memory load
increased HbO concentration in speech-related regions of the left
hemisphere, including the Broca area (Figure 4, A, middle row, mid-
dle). For the third session we found the opposite, that is decreased
activation during high load in these areas (Figure 4, A, lower row,
middle). Hand and facial-related regions of the right motor cortex
were more activated during high compared to low load in the third
session (Figure 4, A, lower row, right).

Group-level Decoding from Machine Learning Models: In
the backward models, we observed decreased LDA coefficients in
right frontopolar regions and the dorsolateral prefrontal cortex
signifying that high HbO concentration was attributed with Class 0
(green), that is low load, during the first session (Figure 4, B, upper
row, right). Recruitment of posterior parts of the left dorsolateral
prefrontal cortex, bilateral anterior parts of the premotor cortex, as
well as the right Broca area, was informative for predicting Class 1
(pink), that is high load (Figure 4, B, upper row, middle and right).
In the second session, activation of the right dorsolateral prefrontal
cortex, motor cortex as well as left ventrolateral prefrontal cortex
increased probability of predicting low load (Figure 4, B, middle
row, green). Here, we observed a strong influence of the left motor
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cortex indexing hand regions (Figure 4, B, middle row, middle).
In the third session, recruitment of left frontopolar regions was
associated with high load, while recruitment of right ventrolateral
and frontopolar regions as well as areas related to mouth and jaw
muscles was predictive for low working memory load (Figure 4, B,
lower row).
The average decoding performance was for most participants and
learning sessions significantly above the empirical chance level es-
timated at 54.93% (95%𝐶𝐼 [54.35; 55.52]; Figure 4, C). In the first ses-
sion, we observed best classification results with the highest perfor-
mance for Participant 9 at 72.95% (95%𝐶𝐼 [71.05; 74.83]) and an aver-
age performance across participants of 64.77% (95%𝐶𝐼 [64.14; 65.42]).
Working memory load could not be reliably monitored for Partici-
pants 1 and 6. In the second session, we observed an overall drop
in classification performance. Although still significant, average
performance was only at 58.62% (95%𝐶𝐼 [58.0; 59.22]). For Partic-
ipants 3 and 4, the classifier failed to reliably predict the current
state. In the final learning session, performance increased slightly
with an average of 60.47% (95%𝐶𝐼 [59.92; 61.02]) and below chance
level predictions for Participants 1 and 9.

Figure 4: Results per VR learning session of the group-level
A) statistic using a linear mixed-effects model (LMM) and B)
decoding from machine learning models. Significant LMM
andmachine learning coefficients were visualized from three
perspectives. Left) rostral perspective showing the brain from
the front, middle) lateral perspective showing the left hemi-
sphere, and right) showing the right hemisphere. Class 0:
low working memory load; Class 1: high working memory
load. TP: Time point. C) LDA classifier performance per par-
ticipant as well as grand averages. Notches of the box plots:
upper and lower boundary of the mean’s 95 % confidence
interval (CI). Box: 50% of the distribution. Whiskers: 5th

and 95th quantile of the distribution. Solid orange line: boot-
strapped mean. Dashed black line: theoretical chance level
of 0.5. Dashed red line: empirical chance level.

Behavioral and SubjectiveMeasures: Behavioral performance
(i.e., response accuracy among one block in percentage) and sub-
jective measures (NASA TLX effort, frustration, and stress) were
analyzed using non-parametric bootstrapping and confidence in-
tervals [11] of the participant-wise contrast high - low working

memory load (Figure 5). There were clear behavioral differences in
all three sessions with significantly lower response accuracy during
high load (first session: −16.77%, 95%𝐶𝐼 [−27.39;−7.77]; second ses-
sion: −10.93%, 95%𝐶𝐼 [−18.55;−4.03]; third session: −7.05%, 95%𝐶𝐼
[−12.14;−2.14]; Figure 5, B). Regarding the subjective measures,
we observed only in the last session a difference for the contrast
high - low, with high working memory load associated with in-
creased effort (7.01, 95%𝐶𝐼 [0.67; 12.81]), frustration (8.03, 95%𝐶𝐼
[1.20; 14.36]), and stress (11.21, 95%𝐶𝐼 [1.99; 19.86]; Figure 5, B).

Figure 5: Results of the Behavioral Performance, NASA TLX
and Stress Scales. A) Bootstrapped mean and its 95% confi-
dence interval of the two conditions per session and scale.
Dots represent single scores of the participants. The solid
orange line represents the bootstrapped mean. Notches of
the box plots represent the upper and lower boundary of the
mean’s 95 % confidence interval, the box visualizes 50% of the
distribution and whiskers the 5th and 95th quantile of the
distribution. B) Bootstrapped mean and its 95% confidence
interval for the high - low contrast of the behavioral perfor-
mance (P), NASA TLX effort (E), NASA TLX frustration (F),
and stress (S) per learning session.

5 DISCUSSION
5.1 Brain Activation Patterns and Learning

Across Multiple Learning Sessions
By investigating brain activation patterns and their dynamics across
multiple learning sessions in VR, we gained insights that are of
great importance for the development of fNIRS-based mental state
monitoring.
A major finding is the complex non-linear relationship between
task difficulty level and hemodynamic response in the prefrontal
cortex (PFC), which is in line with previous studies [13, 35]. In
the first session, where overall task difficulty was rather low, right
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dorsolateral prefrontal cortex activation was strongly related to
working memory load. This area distinguished the two working
memory load conditions not only in the group-level statistics (Fig-
ure 4), but also machine learning decoding (Figure 4). Referring to
the attenuation hypothesis, participants could perform both load
levels well without approaching any state of overload possibly de-
creasing prefrontal cortex activity [13, 35].
Due to our longitudinal approach, we could investigate effects
of workload transitions by increasing the overall task difficulty.
The nonlinear relationship between PFC activation and load level
caused effects of load manipulation to diminish. Although steps
between difficulty levels were the same as in the first session, we
saw less difference in the prefrontal cortex involvement between
high and low load in the second and third session (Figure 4, A and
B, middle and lower row). According to McKendrick and Harwood
[35] suggesting a curvilinear relationship, we likely encountered a
depression (low load with 3 items) to peak (high load with 7 items)
phase in the first session (Figure 4, A and B, upper row). Thereby,
we induced the largest difference in the hemodynamic response of
the prefrontal cortex. By shifting the difficulty level (onset) in the
second learning session, this difference dissolved revealing similar
dorsolateral prefrontal cortex hemodynamic responses in both load
levels. Interestingly, we observed an increase in classification per-
formance and slightly stronger right dorsolateral prefrontal cortex
involvement during high load from the second to the third session
in the group-level statistic (Figure 4, A, lower row). Hence, the
relationship between prefrontal cortex response and load level ap-
pears to be dynamically modulated by repetition (learning effects).
However, the increasing difference between the two load conditions
in the third session was not predictive enough to be used by the
machine learning classifier in the decoding (Figure 4, B, lower row).
Our results indicated that hemodynamic responses in hand- and
face-related areas of the motor cortex (Figure 4, A and B, upper row)
as well as language-related areas (Figure 4, A and B, middle and
lower row) were partially used to discriminate load levels. Based
on the latter observation, the potential of recognizing mnemonic
strategies (e.g., abstract-spatial or categorical-linguistic) and using
this knowledge could be explored by assessing the associated learn-
ing success and presenting it explicitly to the user.
When comparing the forward and backward modelling results, the
decoding models used smaller regions and more distributed pat-
terns for the classification. While activation in some areas was
interpreted consistently across both approaches (e.g., the right dor-
solateral and premotor cortex in the second session; Figure 4, A
and B, middle row, right), activation in other areas was interpreted
oppositely (e.g., the right dorsolateral cortex in the first session;
Figure 4, A and B, upper row, left). A possible explanation is that the
approaches differed in the modelling of inter-individual differences.
While decoding models were learned participant-wise, one group-
level statistic model was estimated for all participants including
inter-individual differences as a random-effect factor. The patterns
of classifier coefficients might differ from the here observed when a)
visualized participant-wise instead of averaged over participants, or
b) one model would be trained for all participants. Since the sample
size of the feasibility study was rather small, including further par-
ticipants could increase consistency between the two approaches
and generalizability of the identified patterns.

The potential of using brain activation patterns to decipher the
current workload is particularly evident when the statistical results
of subjective measures are considered. Retrospective questioning
of participants did not significantly differentiate conditions until
the third session, and, therefore, was not sensitive enough to detect
subtle differences in the first two sessions. Although behavioral
performance differed significantly between conditions in all three
sessions and is, thus, suitable for detecting the current load levels it
has the disadvantage that a number of errors must first occur before
mental states can be decoded and the system adjusted, accordingly.

5.2 Towards User-Aware Adaptive Systems for
Personalized Learning

In this work, we have introduced NIRcademy, which is a novel VR
environment for applied learning scenarios allowing for continu-
ous mental state decoding with fNIRS-based BCI. The design of
robust user models including individual skills and needs as well as
the current mental state is one key challenge in the development
of user-aware adaptive systems. Our results revealed informative
brain patterns for working memory load detection. They, further,
emphasized the importance for machine learning features able to
capture non-linear relationships between conditions at critical tran-
sition points (i.e., when high load evolves into overload). These
comprehensive insights help to accurately predict mental states
with machine learning [7, 27, 59]. In the future, we aim to repli-
cate the findings using HbR signals, transfer our findings into a
real-time passive BCI analysis for continuous brain monitoring and
extend NIRcademy to further learning scenarios. Attractive use
case scenarios are, among others, trainings for industrial safety-
critical infrastructures (e.g., [51]), robot-assisted language learning
[46], multi-agent adaptive human-robot collaborations [23], and
robot-assisted medical interventions [67].
Four conclusions can be drawn from our study: 1) NIRcademy
reveals great potential for future user-aware adaptive learning sys-
tems due to its modular hardware and software components, which
is important for flexible user-tailored adaptation steps. In addition,
adaptations in learning and training scenarios are less time-critical
compared to a real-world high-risk HCI scenarios which facilitates
the implementation of online state monitoring and relaxes require-
ments for communication speed and reactivity. 2) More systematic
studies are required to investigate and evaluate the effectiveness and
user acceptance of fNIRS-based BCI and VR technologies when de-
signing new learning scenarios. This includes adaptation strategies
for the learning environment (manipulating task difficulty via speed,
assistive mode options, or complexity) and communication between
components (frequency of adaptions and feedback, bi-directional
adjustment options enabling users to reverse/chance adaption steps,
as well as transparency reports regarding the learned user model).
3) Current mobile fNIRS systems are not yet optimally designed for
sustained use in everyday applications [60]. They require further
hardware development to guarantee comfortable, painless, and ef-
fortless usage (e.g., by integrating cushioned sensors directly into
the HMD or a textile-like cap). 4) Longitudinal studies are inevitable
to design reliable computational user models driven by real-time
fNIRS-based BCI technologies. Thereby, meta-information (e.g., gen-
der, age, or individual skills and preference) as well as additional
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information sources (e.g., behavioral and subjective measures) can
be further integrated.
Through our complimentary and diligent interdisciplinary approach,
we push the envelope of research in user-aware neuro-adaptive VR
environments to create efficient and effective real-world industrial
learning applications of the future.
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