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Motivation and Aim: Electroencephalographic (EEG) recordings allow to capture temporal activation 

patterns associated with the current level of workload or emotional states [1-4]. Decoding mental states 

from these activation patterns and reacting to them accordingly can increase performance, safety, and 

user experience during human-machine interactions, e.g., in medical surgery or autonomous driving. In 

such naturalistic environments, it is particularly important to integrate context information and identify 

the current locus of attention to achieve robust mental state decoding. When combining EEG signals 

with information regarding the eye movements acquired via eye-tracking, the analysis of neuronal 

temporal dynamics can be related to the fixation on or saccade towards a stimulus [5-9]. 

Multivariate pattern analysis (MVPA) receives increasing attention since it allows to distinguish subtle 

differences in temporal dynamics between conditions [10-11]. MVPA has mainly been applied to 

distinguish different sensory processes with rather low-level neuronal representation (e.g., [8,12-14]), 

especially in functional magnetic resonance imaging (fMRI). However, because of their high temporal 

resolution, magnetoencephalography (MEG) and EEG are particularly suited to unravel fine-grained 

temporal dynamics [10-11]. In a recent MEG study on elementary arithmetic, Pinheiro-Chagas and 

colleagues [15] used MVPA to successfully distinguish between successive additions vs. subtraction.  Few 

studies examined temporal dynamics associated with emotional processing [16-17]. To the best of our 

knowledge, no study combined eye-tracking with EEG to investigate a fixation-related temporal decoding 

of higher cognitive processes. 

Therefore, we here investigate spatio-temporal dynamics of different emotional states and workload 

levels within a MVPA approach on fixation-related EEG recordings. We are interested whether we can 

distinguish between (a) emotional states when processing images with positive, neutral, and negative 

valence and (b) low and high workload.  

Methods: Participants moved their eyes to pictures or pairs of three-digit numbers that were positioned 

on trial-by-trial alternating locations on the screen (cf., [5]). Emotional states were induced using 

pictures from the International Affective Picture System (IAPS) [18] which were of low (LVHA), average 

(neutral), and high (HVHA) valence and high arousal (XXHA). To induce different workload levels, 

participants had to either perform an elementary calculation by adding the two numbers (numbersA; 

high workload) or solely watch the numbers (numbers; low workload). Each stimulus was presented 10 s 

with an overlap of 1 s with the next stimulus. Participants performed 14 blocks with 15 or 20 stimuli per 

block. EEG was measured with 32 channels from 16 participants (12 female, 4 male, age of M = 22.2, SD 

= 4.1, range: 19 and 34 years). 

The EEG signals were de-trended, zero-padded, and re-referenced to mathematically linked mastoids 

[19]. The channels T8 and T7 were excluded due to artefact contamination. Next, we band-passed (1 - 20 

Hz) the signals using a zero-phase lag finite impulse response (FIR) filter. Data were cut into 3 s epochs 

starting at the fixation-onset, including a 200 ms baseline. Epochs with strong artefacts were rejected 



 

 

(maximum deviation above 200 μV in AFp1, AFp2). Further cardiac-, ocular-, and muscular-related 

artefacts were removed using an independent component analysis (ICA) as implemented in the mne 

toolbox [20].  

For the time decoding, we used the xDAWN algorithm [21-22] as implemented in mne with two 

components to increase the signal-to-noise ratio by estimating spatial filters and applying them to the 

signal. Next, signals were downsampled (200 Hz) and baseline corrected. To distinguish the workload levels 

and emotional states, we compared conditions pairwise as a binary classification problem (HVHA vs. 

neutral, LVHA vs. neutral, HVHA vs. LVHA, numbers vs. numbersA) using a logistic regression (LR) with L2 

regularization and liblinear as solver (implemented via scikit-learn; [23]). We compared the results to: (a) 

an empirically estimated chance level (dummy classifier) and (b) a theoretical chancel level as suggested 

by [24]. Classifier performance was evaluated per participant within a Monte Carlo Simulation (MCS) with 

100 iterations, stratified 5-fold cross validation for each time point, and area under the receiver operating 

characteristic (ROC) curve (AUC) as metric (Figure 1A). For spatial interpretation, we used the weight 

vectors (coefficients) of the classifier models, as implemented in mne [20,25] (see Figure 1B).  

Results and Discussion: Our results reveal above-chance level decoding performance of the emotional 

states starting 200 ms to 700 ms after fixation onset (HVHA vs. neutral: max AUC = 0.927 at 352 ms; 

LVHA vs. neutral: max AUC = 0.893 at 420 ms; HVHA vs. LVHA: max AUC = 0.885 at 288 ms). During the 

workload condition, the above-chance level decoding time window is 200 to 580 ms (max AUC = 0.921 at 

352 ms; Figure 1A). The topographical plots of the spatial patterns indicate that parieto-occipital 

channels mainly contributed to the decoding when contrasting HVHA to LVHA and neutral (Figure 1B); 

while frontal channels were mainly associated to neutral and LVHA contrasted to HVHA. For the 

decoding of the workload condition, most discriminative channels were distributed over fronto-central 

regions. The decoded time windows and spatial patterns are in line with results of the event-related 

potential (ERP) analysis [5] and further studies investigating ERPs associated with emotional processing 

and workload such as the P300 and late positive potential (LPP) [26-29].  

Our proposed method to combine fixation-related EEG with MVPA allowed us to identify the temporal 

evolution of discrimination success (time decoding) of higher order cognitive processes such as emotion 

and workload level on a single trial basis. The observed spatial patterns of the coefficients correspond to 

those reported in the literature with a stronger contribution of parieto-occipital channels for emotion 

and fronto-central channels for workload classification. In the long term, our research aims to recognize 

cognitive and emotional states in naturalistic and complex environments by combining context 

information with sensitive and robust decoding methods. In the next step, we plan to investigate 

decoding multiple classes within one model as well as temporal generalization, or performance stability, 

of one classifier trained at one time point when testing it on all other time points [10-11,15].  



 

 

 

Figure 1. Temporal decoding of a logistic regression to discriminate emotional states and workload levels. A) Grand-average 
classification performance of the Monte Carlo Simulation (MCS; 100 iterations) measured with the metric Area Under Curve 
(AUC) and averaged across subjects, folds, and iterations. Shaded areas represent the 5 and 95 percentiles. Dotted purple line: 
Theoretical chance level at 0.62 [24]. Dashed green line: Dummy classifier with stratified as method. Red dots: Significant time 
points examined via a Wilcoxon Sign Rank test (one-sided) with False Discovery Rate (FDR) correction for multiple comparisons 
and a significance level at α = .01 comparing the average classification performance of the MCS tested against the empirical 
chance level. B) Topographical plots represent the spatial patterns of the coefficients from the decoding models.  

References: 

[1] Fairclough, S. H. (2009). Fundamentals of physiological computing. Interacting with Computers 21, 133–145. doi: 
10.1016/j.intcom.2008.10.011 

[2] Picard, R. W. (2000). Affective computing. Cambridge, Massachusetts, London: The MIT Press. 

[3] Parasuraman, R., and Rizzo, M. (2008). Human Technology Interaction Series: Neuroergonomics. Oxford: Oxford University 
Press. 

[4] Appriou, A., Cichocki, A., and Lotte, F. (2020). Modern Machine-Learning Algorithms: For Classifying Cognitive and Affective 
States From Electroencephalography Signals. IEEE Syst. Man Cybern. Mag. 6, 29–38. doi: 10.1109/MSMC.2020.2968638 

[5] Brouwer, A.-M., Stuldreher, I., Penen, S.H., Lingelbach, K., and Vukelić, M. (2021). Combining eye tracking and physiology for 
detectionof emotion and workload. In Proceedings of the 12th International Conference on Measurement and Behavioural 
and 6th International Seminar on Behavioral Methods,1 , 2–11. doi:10.6084/m9.figshare.13013717 



 

 

[6] Wenzel, M. A., Golenia, J.-E., and Blankertz, B. (2016). Classification of Eye Fixation Related Potentials for Variable Stimulus 
Saliency. Front. Neurosci. 10, 23. doi: 10.3389/fnins.2016.00023 

[7] Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., and Kliegl, R. (2011). Coregistration of eye movements and EEG in 
natural reading: analyses and review. J Exp Psychol Gen 140, 552–572. doi: 10.1037/a0023885 

[8] Brouwer, A.-M., Reuderink, B., Vincent, J., van Gerven, M. A. J., and van Erp, J. B. F. (2013). Distinguishing between target and 
nontarget fixations in a visual search task using fixation-related potentials. J Vis 13, 17. doi: 10.1167/13.3.17 

[9] Brouwer, A.-M., Hogervorst, M. A., Oudejans, B., Ries, A. J., and Touryan, J. (2018). “Electroencephalography and Eye 
Tracking Signatures of Target Encoding During Guided Search,” in Neuroergonomics (Elsevier), 307–308. 

[10] King, J.-R., and Dehaene, S. (2014). Characterizing the dynamics of mental representations: the temporal generalization 
method. Trends Cogn Sci 18, 203–210. doi: 10.1016/j.tics.2014.01.002 

[11] Grootswagers, T., Wardle, S. G., and Carlson, T. A. (2017). Decoding Dynamic Brain Patterns from Evoked Responses: A 
Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. J Cogn Neurosci 29, 677–697. doi: 
10.1162/jocn_a_01068 

[12] Pantazis, D., Fang, M., Qin, S., Mohsenzadeh, Y., Li, Q., and Cichy, R. M. (2018). Decoding the orientation of contrast edges 
from MEG evoked and induced responses. Neuroimage 180, 267–279. doi: 10.1016/j.neuroimage.2017.07.022 

[13] Kamitani, Y., and Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nat Neurosci 8, 679–685. 
doi: 10.1038/nn1444 

[14] Haynes, J.-D., and Rees, G. (2006). Decoding mental states from brain activity in humans. Nat Rev Neurosci 7, 523–534. doi: 
10.1038/nrn1931 

[15] Pinheiro-Chagas, P., Piazza, M., and Dehaene, S. (2019). Decoding the processing stages of mental arithmetic with 

magnetoencephalography. Cortex 114, 124–139. doi: 10.1016/j.cortex.2018.07.018 

[16] Smith, F. W., and Smith, M. L. (2019). Decoding the dynamic representation of facial expressions of emotion in explicit and 
incidental tasks. Neuroimage 195, 261–271. doi: 10.1016/j.neuroimage.2019.03.065 

[17] Hundrieser, M., Mattes, A., and Stahl, J. (2021). Predicting participants' attitudes from patterns of event-related potentials 
during the reading of morally relevant statements - An MVPA investigation. Neuropsychologia 153, 107768. doi: 
10.1016/j.neuropsychologia.2021.107768 

[18] Lang, P. J., Bradley, and M. M., Cuthbert, B. N. (2008). International Affective Picture System (IAPS): Affective ratings of 
pictures and instruction Manual. University of Florida, Gainesville, Tech Rep A-8, Tech. Rep. 

[19] Nunez, P. L., and Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford Univ. Press. 

[20] Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., et al. (2014). MNE software for 
processing MEG and EEG data. Neuroimage 86, 446–460. doi: 10.1016/j.neuroimage.2013.10.027 

[21] Rivet, B., Cecotti, H., Souloumiac, A., Maby, E., and Mattout, J. (2011). “Theoretical analysis of xDAWN algorithm: 
Application to an efficient sensor selection in a p300 BCI,” in 2011 19th European Signal Processing Conference, 1382–1386. 

[22] Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xDAWN algorithm to enhance evoked potentials: application to 
brain-computer interface. IEEE Trans Biomed Eng 56, 2035–2043. doi: 10.1109/TBME.2009.2012869 

[23] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” 2011. [Online]. Available: http://arxiv.org/pdf/1201.0490v4 

[24] Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance: The caveat of theoretical chance levels in brain 
signal classification and statistical assessment of decoding accuracy. Journal of neuroscience methods 250, 126–136. 



 

 

[25] Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., et al. (2014). On the interpretation of weight 
vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96–110. doi: 10.1016/j.neuroimage.2013.10.067 

[26] Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118, 2128–2148. doi: 
10.1016/j.clinph.2007.04.019 

[27] Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., and Lang, P. J. (2000). Brain potentials in affective picture 
processing: covariation with autonomic arousal and affective report. Biological Psychology 52, 95–111. doi: 10.1016/S0301-
0511(99)00044-7 

[28] Olofsson, J. K., Nordin, S., Sequeira, H., and Polich, J. (2008). Affective picture processing: an integrative review of ERP 
findings. Biological Psychology 77, 247–265. doi: 10.1016/j.biopsycho.2007.11.006 

[29] Polich, J., and Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology 41, 
103–146. doi: 10.1016/0301-0511(95)05130-9 

 

Acknowledgements 

This material is based upon work supported by the Air Force Office of Scientific Research under award 

number FA9550‐19‐1‐7015. Any opinions, finding, and conclusions or recommendations expressed in 

this material are those of the authors and do not necessarily reflect the views of the United States Air 

Force. 

 


