Investigating the Modulation of Spatio-temporal and Oscillatory Power Dynamics by Perceptible and Non-perceptible Rhythmic Light Stimulation

Katharina Lingelbach

12th International Conference on Applied Human Factors and Ergonomics

Neuroergonomics & Cognitive Engineering

26. May 2021

Universität Stuttgart Institut für Arbeitswissenschaft und Technologiemanagement IAT

Motivation and State-of-the-Art (1)

Rhythmic light stimulation bears great potential to evoke steady-state visual evoked potentials (SSVEPs)

well suited for **Brain-Computer Interface (BCI) applications** due to their high signal-to-noise ratio (SN)

frequency-modulated (FM) protocols allow for less perceptible visual stimulation

- decreased eye fatigue and increased user comfort [6,7,8].
- Carrier frequency (usually a high frequency, e.g., 40 Hz) is modulated by a second frequency (i.e., the modulation frequency, e.g., 30 Hz)
- SSVEPs are evoked at the **frequency of the difference** (40 30 = 10 Hz).

 $signal = A + FV * sin(2 * \pi * Fc * t + (M * sin(2 * \pi * Fm * t)))$

[1] Dreyer A M, Herrmann C S (2015) Frequency-modulated steady-state visual evoked poten-tials: a new stimulation method for brain-computer interfaces. *J Neurosci Methods* 241, 1–9

[2] Dreyer A M, Herrmann C S, Rieger J W.: Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials. Front Hum Neurosci 11, 391

[3] Lingelbach, K., Dreyer, A. M., Schöllhorn, I., Bui, M., Weng, M., Diederichs, F., ... & Vukelić, M. (2021). Brain oscillation entrainment by perceptible and non-perceptible rhythmic light stimulation. *Frontiers in Neuroergonomics*, *2*, 9.

- A: amplitude of the current intensity
- FV: fluctuation of the current intensity span
- Fc: carrier frequency
- Fm: modulation frequency (30 Hz),
- M the modulation index (M = 2) (2),
- *t* the time vector

Motivation and State-of-the-Art (2)

Strongest EEG power modulations are elicited when the stimulation source is

- positioned in the centre of the visual field
- stimulation source is directly fixated [1,9].
- \rightarrow However, this is **impractical for most real-world applications**
- **Potential real-world environments** for rhythmic light stimulation are in a **car interiors or cockpits**
- Real-world applications of rhythmic light stimulation require:
 - high user comfort, e.g., by using less perceptible rhythmic stimulation
 - feasibility to allow integration of the stimulation in everyday life environments and associated tasks, e.g., by not requiring direct fixation on the light source

Research Question

- We were interested in the topographical modulations measured via visual event-related potentials (ERPs) and oscillatory power modulations of rhythmic light stimulations suitable for the application in real-world environments
- We investigated four protocols varying in their **perceptibility** and **locus of fixation**:
 - perceptible frequency-modulated (FM) rhythmic light stimulation with amplitudes of the flickering intensity above a previously estimated individual threshold
 - non-perceptible FM rhythmic light stimulation with amplitudes of the flickering intensity below a previously estimated individual threshold
 - overt attention with the focus directly on the light source
 - **covert attention** with the focus indirectly on the light source

Methods

Sample

- EEG data from 12 participants
- ten men, age: M = 26.83, SD = 3.80
- corrected-to-/normal vision
- visual acuity > 0.7

Technical Set-Up

- LED with 1 m distance to the nasion (covering 1.14° of the visual field)
- 10 Hz stimulation with carrier frequency = 40 Hz and modulation frequency = 30 Hz

 $signal = A + FV * sin(2 * \pi * 40 * t + (2 * sin(2 * \pi * 30 * t))) [1,2]$

- covert condition with crosshair positioned 10 cm below the LED as fixation point (5.7 ° of the visual field)
- Perceptibility threshold estimation via the **method of constant stimuli** in a pre-session
 - above the individual perceptibility threshold intensity: **IPT + 2mA (A-IPT)**
 - below the individual perceptibility threshold intensity: IPT 2mA (B-IPT)

[1] Dreyer A M, Herrmann C S (2015) Frequency-modulated steady-state visual evoked poten-tials: a new stimulation method for brain-computer interfaces. J Neurosci Methods 241, 1–9 [2] Dreyer A M, Herrmann C S, Rieger J W.: Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials. Front Hum Neurosci 11, 391

[3] From Lingelbach, K., Dreyer, A. M., Schöllhorn, I., Bui, M., Weng, M., Diederichs, F., ... & Vukelić, M. (2021) Brain oscillation entrainment by perceptible and non-perceptible rhythmic light stimulation. Frontiers in Neuroergonomics, 2, 9.

IAO

Procedure – Main Session

IAO

EEG Results – ERP covert vs. overt

Overt attention – A-IPT

strongest deflection of the components in electrodes overlying occipital regions

Covert attention – B-IPT

- reduced positive deflections in parieto-occipital electrodes (P90 and P300) and increased negative deflection in the N180
- P300 enhanced in frontal electrodes

Covert attention – A-IPT

reduced positive deflections in parieto-occipital electrodes in early and late components (i.e., P90, P300).

EEG Results – ERP

B-IPT (non-perceptible) vs. A-IPT (perceptible)

Covert attention

significant differences between A-IPT and B-IPT in early components

Covert attention – B-IPT

P90 and P300 were significantly reduced and N180 was enhanced in fronto-central electrodes

Covert attention – A-IPT

stronger negative deflections in the N180 in parieto-occipital electrodes

IAO

Discussion

Oscillatory power modulations

- similar for the four stimulation protocols
- increased oscillatory power in the first harmonic response (beta band power) in occipital electrodes for the covert compared to the overt condition during non-perceptible stimulation \rightarrow suitable for BCI applications [19].

Event-related potentials

- early components: processing of psychophysical stimulus features (e.g. contrast, motion, and color [22,23])
- lately induced ERPs: cognitive information processing

Attention effect

- enlarged positive deflections when the stimulation source was overtly attended
- attention-related sensory gain control mechanisms for improved acuity of visual perception within the spotlight

Conclusion

- entrainment effects represented in both ERPs and power even for a non-perceptible stimulation and without directly fixating on the light source.
- strong potential for naturalistic non-clinical applications to enhance neuronal activity and cognitive processes.

Thanks for your attention

Thanks to all authors of the contribution

Katharina Lingelbach, Isabel Schöllhorn, Alexander M. Dreyer, Frederik Diederichs, Michael Bui, Michael Weng, Jochem W. Rieger, Ina Petermann-Stock, and Mathias Vukelić

Contact:

Katharina Lingelbach

University of Oldenburg and Fraunhofer IAO Germany

Katharina.Lingelbach@iao.fraunhofer.de

