

www.ahfe.org

Investigating Feature Set Decisions for Mental State Decoding in Virtual Reality based Learning Environments

Katharina Lingelbach

Brain-Computer Interfaces

Decoding Working Memory Load with Functional Near-infrared Spectroscopy

Motivation

- investigate different statistical feature sets for working memory load decoding
- spatial distribution of informative channels

Methods

- functional near-infrared spectroscopy (fNIRS) to measure brain activity
- 11 volunteers (four female, mean age of 23.73 ± 1.42 years)
- colour-based visuo-spatial n-back paradigm in VR (von Lühmann, 2018¹)
- Iow (1-back) and high working memory load (3-back)

University of Stuttgar

Technology Management IAT

Machine Learning Pipeline for Working Memory Load Decoding

HBO and HBR Statistical Features and Classifiers

Preprocessing Pipeline

- Converted to optical density
- Channel pruning
- Transformed to HbO and HbR concentration changes (modified Beer-Lambert law)
- Filtering and amplitude rejection
- Extraction of epochs of interest (4 sec)

Machine Learning Pipeline

- Subject and HbO/HbR-wise classification model
- Nested cross-validation with hyperparameter optimization (5 folds à 20 repetitions)
- Metric AUC-ROC
- Empirical chance level estimated with a Dummy Classifier
- Classifier: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and Gradient boosting tree (xgBOOST)
- Feature Sets: Average, Max, Min, Peak2Peak, Slope, Time2Peak
- Evaluation: Bootstrapping over the cross-validation folds to estimate the mean and its confidence interval

Performance of Working Memory Load Decoding

HBO and HBR Statistical Features

Performance of Working Memory Load Decoding LDA Coefficients

Performance of Working Memory Load Decoding

HBO and HBR Statistical Features

Summary

NIRCademy – Mental State Decoding in a Industrial VR Learning Scenario

Feature Sets

- Highest average decoding performance for a combined HbO and HbR and optimized feature set
- Single statistical feature sets yielded in rather low and below-chance level decoding
- HbR-related features contributed the most to our SFS-based decoding

Spatial Distribution

Informative channels were rather spatially distributed throughout the PFC

Outlook

- Future everyday world BCI applications require the decoding of more than two WM load levels
- Decisions regarding machine learning pipelines and feature sets are vital and require further research

www.ahfe.org

Katharina Lingelbach Applied Neurocognitive Systems Fraunhofer IAO <u>katharina.lingelbach@iao.fraunhofer.de</u>

Thanks to the Team ;-)

Daniel Diers

Michael Bui

Mathias Vukelić

The research was supported by the Ministry of Economic Affairs, Labour, and Tourism Baden-Wuerttemberg within the project »KI-Fortschrittszentrum Lernende Systeme und Kognitive Robotik« and Federal Ministry of Economic Affairs and Climate Action [BMWi, NIRcademy, ZF4509902BA9].

