3RD NEUROERGONOMICS CONFERENCE 2021

BEST TALK AWARD

1ST PLACE (EX-AEQUO)

KATHARINA LINGELBACH, SABRINA GADO, JOCHEM RIEGER, MATHIAS VUKELIĆ

FOR

INVESTIGATING THE EMOTION-COGNITION INTERACTION: EFFECTS OF AFFECTIVE DISTRACTORS ON WORKING MEMORY LOAD

Jury

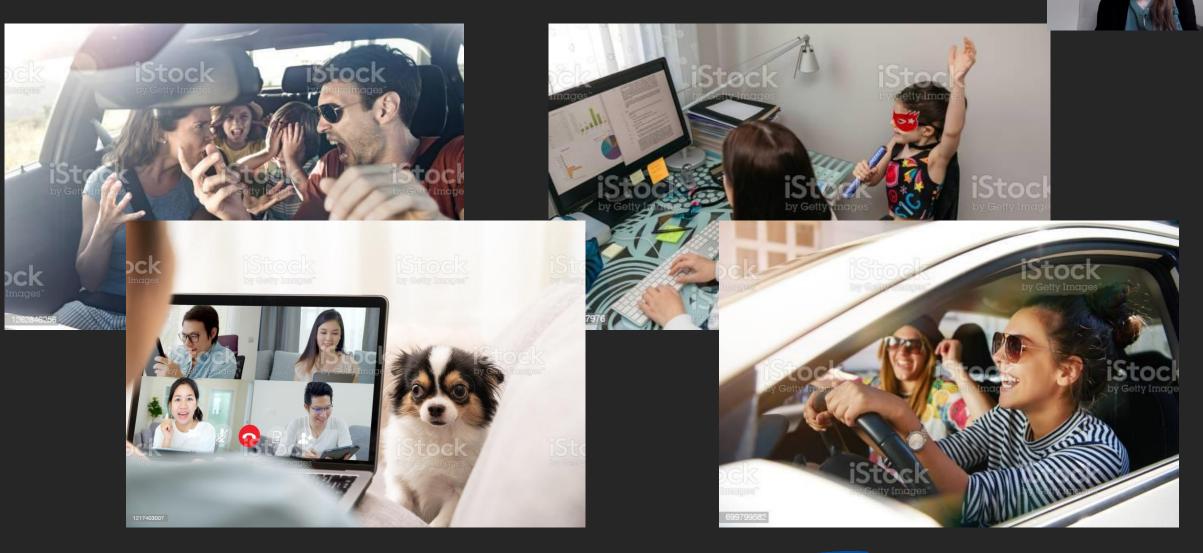
Stefan Arnau Stephanie Enriquez-Geppert Ranjana Mehta Stephane Perrey

Franziska Emmerling & Lewis Chuang General Co-Chairs

INVESTIGATING THE EMOTION-COGNITION INTERACTION

Effects of Emotional Distractors on Working Memory Load

Katharina Lingelbach


Effects of Emotional Processes on Cognitive Processing 010011 **Emotion** Cognition Intervowen and partly shared neurocircuitry [1-3] Effects of Cognitive Processes on Emotional Processing

Rethinking the Relation between Emotion and Cognition

[1] Cromheeke, & Mueller (2014). Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. *Brain Struct Funct* 219, 995–1008
[2] Pessoa (2008). On the relationship between emotion and cognition. *Nature reviews neuroscience* 9(2), 148-158.
[3] Okon-Singer et al. (2015). The neurobiology of emotion-cognition interactions: Fundamental questions and strategies for future research. *Front Hum Neurosci* 9, 58.

Typical emotional distractions in our everyday life

Effects of Emotional Distractors on Working Memory Load

State of the Art

- Detrimental effects of emotional distraction on cognitive processes [4-6]
- Strongest emotional interference when i) **cognitive load is low** and ii) distractors' valence deviates from neutral [1,7]

Neurophysiological effects

- Investigating emotion & cognition with electroencephalography (EEG)
 - **Emotion states: Frontal alpha** (8 12 Hz) asymmetry (FAA) [e.g., 8]
 - **Cognitive states: Ratio of frontal theta** (4 7 Hz) and parietal alpha power (WL) [e.g., 9]

Page 4

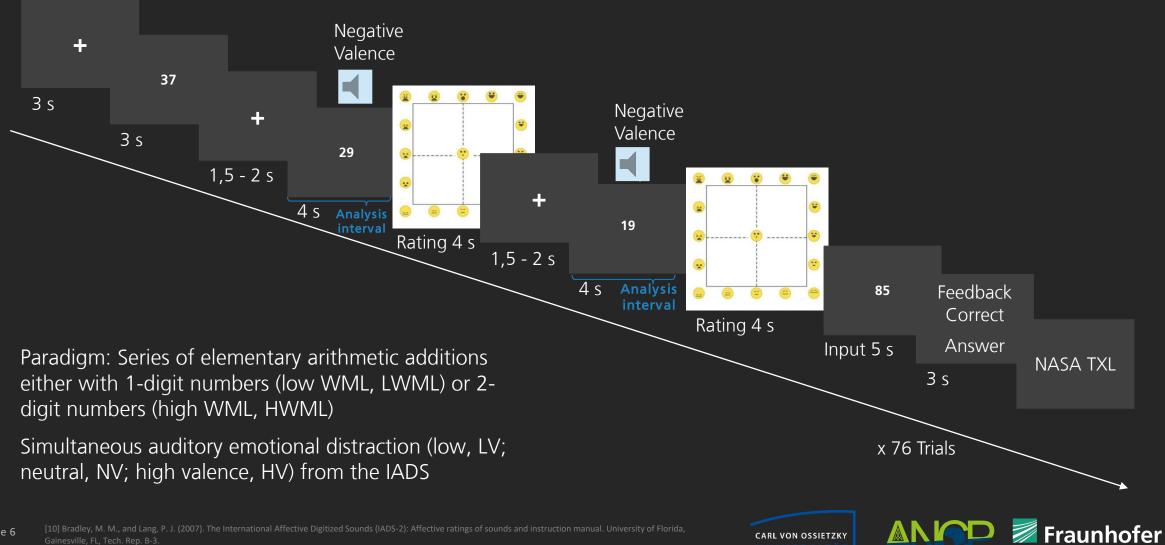
Frontal Activity Frontal Activity Positive Negative Withdrawal Approach Frontal theta Cognitive load Parietal alpha

Increased **Right**

CARL VON OSSIETZKY

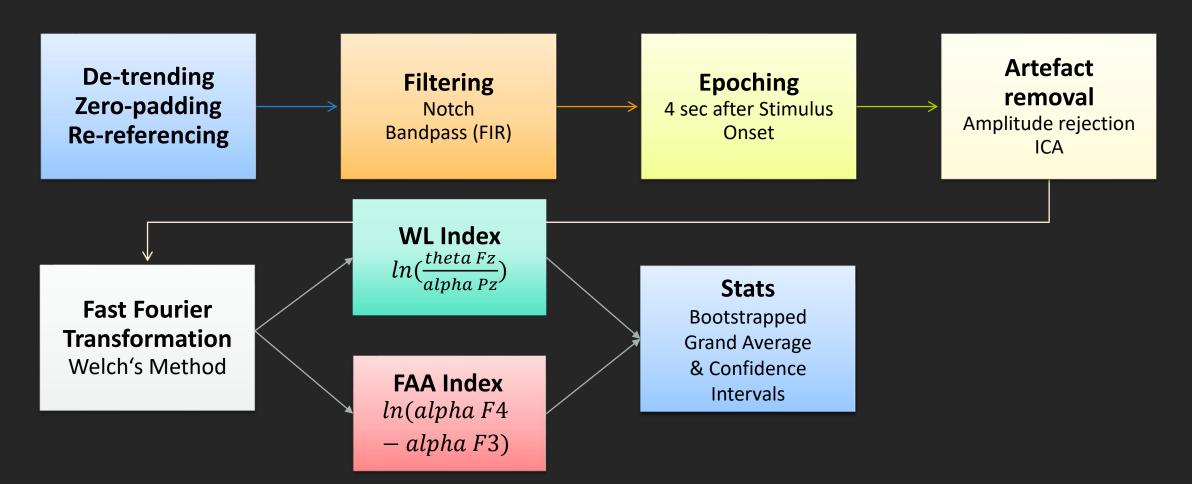
Increased Left

Research Questions


- 1 How do **auditory distractors** and their affective valence **influence** neurophysiological indices associated with **valence** and **working memory load**?
- 2 Which correlates can capture interactions between cognitive control and affective-emotional distraction processes?
- 3 Do we observe stronger emotional interference effects (i) **under low WML** because of sufficient available resources to process emotional distractors and (ii) for **emotional stimuli** due to a higher salience and relevance?

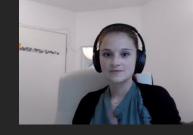
Pilot study with N = 12 (five women; 1 diverse; $M = 24 \pm 2.6$ years) using a dry mobile EEG

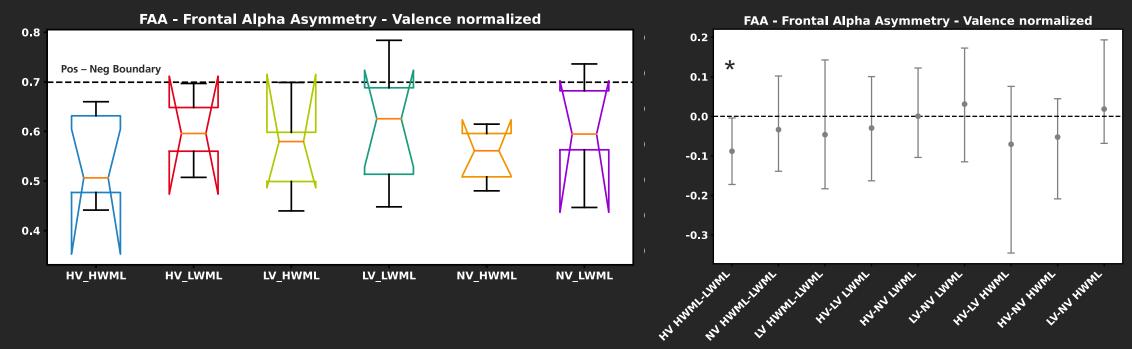
Experimental Procedure with an Exemplary Trial



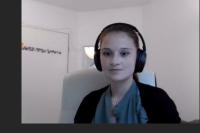
IAO

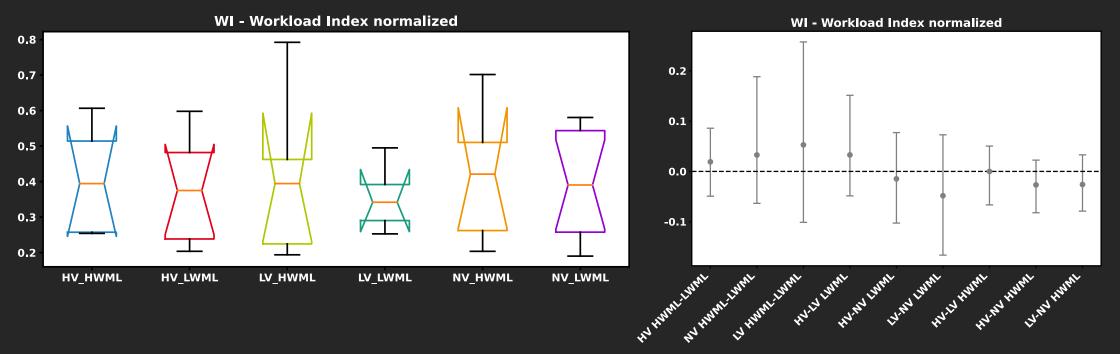
EEG Processing Pipeline




IAO

Effects of Emotional Distractors and WML on the FAA

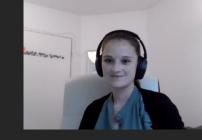




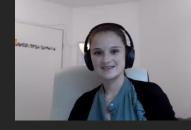
- Emotional processing is altered by the level of working memory load
 - reduced FAA values and, therefore less positive evaluation for positive stimuli under high working memory load
 - **emotional evaluation** was rather **negative** independent of the condition

Effects of Emotional Distractors and WML on the WL

- 2 Neutral stimuli seem to have the strongest emotional interference effects during working memory load compared to positive and negative stimuli (non-significant trend).
 - There were no significant differences between the conditions.


Take Home Message

- 1 Emotional processing is altered by the level of working memory load with strongest effects on positive stimuli
- 2 Neutral auditory distractors seem to induce additional workload compared to emotional stimuli
- **3** The FAA revealed differences between the conditions but not the WL
- Future research is necessary to investigate new approaches that not only explain the consequences of the interaction, but the interaction process itself!



Implications of this research include (1) higher context sensitivity and (2) holistic evaluation of identified mental states in **safety-critical environments**, e.g., during driving or in human-computer interactions.

Questions?

Katharina Lingelbach PhD Student University Oldenburg Fraunhofer IAO - Applied Neurocognitive Systems katharina.lingelbach@iao.fraunhofer.de +49 711 970 5342

Thanks to the Team ;-)

Funding

This work was supported by grants from the Baden-Wuerttemberg Ministry for Economic Affairs, Labour and Housing (Project »KI-Fortschrittszentrum Lernende Systeme und Kognitive Robotik«).

References

- [1] Cromheeke, & Mueller (2014). Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. Brain Struct Funct 219, 995–1008.
- [2] Pessoa (2008). On the relationship between emotion and cognition. Nature reviews neuroscience 9(2), 148-158.
- [3] Okon-Singer et al. (2015). The neurobiology of emotion-cognition interactions: Fundamental questions and strategies for future research. Front Hum Neurosci 9, 58.
- [4] Dolcos, & Denkova (2014). Current emotion research in cognitive neuroscience: Linking enhancing and impairing effects of emotion on cognition. Emotion Review 6, 362–375.
- [5] Iordan et al. (2013). Neural signatures of the response to emotional distraction: A review of evidence from brain imaging investigations. Front Hum Neurosci 7, 200.
- [6] Wessa et al. (2013). Goal-directed behavior under emotional distraction is preserved by enhanced task-specific activation. Soc Cogn Affect Neurosci 8, 305–312.
- [7] Shafer et al. (2012). Processing of emotional distraction is both automatic and modulated by attention: evidence from an event-related fMRI investigation. J Cogn Neurosci 24, 1233–1252.
- [8] Smith et al. (2017). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. Int J Psychophysiol 111, 98–114.
- [9] Gevins et al. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb Cortex 7, 374–385.
- [10] Bradley, M. M., and Lang, P. J. (2007). The International Affective Digitized Sounds (IADS-2): Affective ratings of sounds and instruction manual. University of Florida, Gainesville, FL, Tech. Rep. B-3.

