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Introduction: We investigated brain activation patterns of interacting emotional
distractions and cognitive processes in a close-to-naturalistic functional near-
infrared spectroscopy (fNIRS) study.

Methods: Eighteen participants engaged in a monitoring-control task, mimicking
common air tra�c controller requirements. The scenario entailed experiencing
both low and high workload, while concurrently being exposed to emotional
speech distractions of positive, negative, and neutral valence.

Results: Our investigation identified hemispheric asymmetries in prefrontal
cortex (PFC) activity during the presentation of negative and positive emotional
speech distractions at di�erent workload levels. Thereby, in particular, activation
in the left inferior frontal gyrus (IFG) and orbitofrontal cortex (OFC) seems to
play a crucial role. Brain activation patterns revealed a cross-over interaction
indicating workload-dependent left hemispheric inhibition processes during
negative distractions and high workload. For positive emotional distractions
under low workload, we observed left-hemispheric PFC recruitment potentially
associated with speech-related processes. Furthermore, we found a workload-
independent negativity bias for neutral distractions, showing brain activation
patterns similar to those of negative distractions.

Discussion: In conclusion, lateralized hemispheric processing, regulating
emotional speech distractions and integrating emotional and cognitive processes,
is influenced by workload levels and stimulus characteristics. These findings
advance our understanding of the factors modulating hemispheric asymmetries
during the processing and inhibition of emotional distractions, as well as
the interplay between emotion and cognition. Moreover, they emphasize the
significance of exploring emotion-cognition interactions in more naturalistic
settings to gain a deeper understanding of their implications in real-world
application scenarios (e.g., working and learning environments).
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1 Introduction

Naturalistic environments are typically characterized by a

multitude of dynamic visual and auditory stimuli, which are

attention-catching signals with biological relevance (Vuilleumier,

2005; Bradley, 2009; Matusz et al., 2019). Previous assumptions

about perception, attention, and the underlying brain mechanisms

have been derived from traditional research paradigms employing

well-controlled, simplified, and isolated experimental stimuli. Thus,

these assumptions are often challenged when applied to more

naturalistic scenarios, characterized by dynamically changing task

demands and interacting cognitive processes (Matusz et al., 2019).

Especially, socio-emotional cues like the screaming of children,

facial expressions of individuals in close range, or emotional

conversations attract attention – regardless of whether they are

task-relevant or not – since they reveal salient information for

a potential need to adapt one’s behavior (Norris et al., 2004;

Matusz et al., 2019). Studying the brain patterns underlying such

interacting processes in more naturalistic scenarios is decisive, not

only for replicating well-controlled laboratory research findings in

real-world settings (Peck et al., 2014), but also for the development

of safe and efficient human-machine systems (Maiseli et al.,

2023).

1.1 E�ects of emotional distractions on
cognitive processes

When a stimulus is salient albeit not relevant to the

ongoing task, it competes for cognitive resources with the task-

relevant cognitive process and, thereby, potentially decreases task

performance (Dolcos et al., 2011; D’Andrea-Penna et al., 2017;

Schweizer et al., 2019; Lingelbach et al., 2021). To reduce or even

overcome this impairing effect of distractions, coping mechanisms

of cognitive control are recruited to re-establish task performance

(see Iordan et al., 2013; Schweizer et al., 2019, for reviews). Previous

studies have demonstrated that overcoming the disruptive effect

of emotionally negative distractions is more challenging compared

to non-emotional or emotionally positive distractions (Dolcos and

McCarthy, 2006; Dolcos and Denkova, 2014; García-Pacios et al.,

2015a,b). This difficulty may arise due to their association with

potentially harmful events or threats, making them highly salient.

However, the effect of emotionally positive distractions is less

investigated and understood (Kellermann et al., 2012; Grimshaw

and Carmel, 2014; García-Pacios et al., 2015a,b; Schweizer et al.,

2019). Furthermore, previous studies explored the effects of

emotionally negative and positive distractions mostly under only

one level of workload (e.g., rather low working memory load in

García-Pacios et al., 2015a,b). Exceptions investigating emotional

distraction effects on several working memory load levels are Erk

et al. (2007) and Mano et al. (2013). Using behavioral data, Mano

et al. (2013) reported that emotionally positive distractions in the

intermediate load level caused the greatest task impairment (but cf.,

Kellermann et al., 2012). Using both behavioral and neuroimaging

data, Erk et al. (2007) studied two levels of working memory

load and four distraction conditions: positively, negatively and

neutrally rated pictures from the International Affective Picture

System (IAPS; Lang et al., 1997), and a control condition (a blank

screen). They observed no performance impairment as well as no

interference effects on working memory-related brain activation,

during emotionally positive and negative distractions. The authors

even found improved performance for emotional compared with

neutral distractions as well as regulation effects with reduced

activity in emotion-processing regions, mediated by prefrontal

regions, during high load scenarios (Erk et al., 2007).

1.2 Experimental manipulation of emotion
and workload

In order to investigate the interaction of different workload

levels and emotional distractions, successful manipulations of both

factors need to be ensured. Workload is defined as the ratio

of available working memory resources relative to the resources

required to successfully execute a task (Welford, 1978; Young

et al., 2015). The ability to keep and update information in

the working memory is limited by both the individual’s capacity

(Barrouillet et al., 2007) and focus on attention (Kahneman, 1975;

Sweller, 1988;Wickens, 2008). To induce certain levels of workload,

researchers can adapt the task difficulty level (i.e., information

processing demands induced by the task) to increase the amount

of cognitive resources required to perform the task. For instance,

by increasing the number of information elements that need to

be maintained simultaneously in working memory (Baddeley and

Hitch, 1974; Sweller, 1988; Wirzberger et al., 2017, 2018). However,

this number cannot be increased indefinitely, as this might result

in a potential ceiling or overload effect (Cowan, 2001; Mano et al.,

2013).

Task-unrelated demands might arise from bottom-up

interfering situational aspects, such as the prevalence of distractions

competing for an individual’s limited processing capacities. To

successfully capture a person’s attention, a stimulus needs to

clearly stand out from the situational background (Wickens

et al., 2021). There is evidence that participants’ performance in

complex cognitive tasks suffers from irrelevant but intelligible

speech stimuli (Banbury and Berry, 1998; Liebl et al., 2012).

Human speech is a natural and essential means of communication,

conveying not only linguistic information but also reflecting

the speaker’s emotional state (Chen et al., 2016). Importantly,

strong emotional intensity with associated acoustic characteristics

contributes to stimulus salience (Anikin, 2020) and one may

expect that this exacerbates the disruptive effect. However, in their

meta-analysis, Schweizer et al. (2019) highlighted that a behavioral

effect of emotional distraction is difficult to capture due to coping

mechanisms counteracting task-related impairments, particularly

in healthy samples.

Even when coping efforts veil behavioral effects, these may

still be observable in brain activation patterns, which may capture

interacting processes involved in the perception of emotional

distractions and maintenance of goal-directed behavior (e.g.,

Babiloni, 2019).
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1.3 Theories and neurophysiological
correlates of emotional and cognitive
processes

When investigating neuronal activation patterns associated

with workload and emotional distraction, the prefrontal cortex

(PFC) is a key region for goal-directed behavior and executive

functions, such as information retrieval and updating, action

monitoring, and inhibition (e.g., Miller et al., 2002; Kondo et al.,

2004; Erk et al., 2007; Asplund et al., 2010; Dehais et al., 2020). The

fronto-parietal control network, a functional connection between

frontal and parietal regions, is recruited during task-related

working memory maintenance (Curtis, 2006; Martínez-Vázquez

and Gail, 2018). Thereby, the involvement of the right dorsolateral

prefrontal cortex (dlPFC) is especially crucial (Pessoa et al., 2002;

Curtis and D’Esposito, 2003; Nee et al., 2007; Barbey et al., 2013;

Schweizer et al., 2019). The ventrolateral prefrontal (vlPFC) and

orbitofrontal cortex (OFC) are recruited during the inhibition of

emotional distractions and their activation is correlated with task

performance (Ochsner et al., 2004; Iordan et al., 2013; Eden et al.,

2015).

For stimuli such as words or pictures, which were identified

to be meaningful, the left inferior frontal gyrus (IFG) is

proposed to be involved in the encoding and classification of

semantic categories (Gabrieli et al., 1998; Zahn et al., 2000;

Wildgruber et al., 2004; Friederici, 2012). Additionally, during

the emotional valence processing of semantic stimuli, greater

activation was observed in the left hemisphere when presented

with positive compared to negative stimuli (Ahern and Schwartz,

1985; Silberman and Weingartner, 1986; Harmon-Jones and Allen,

1998; Herrington et al., 2005; Smith et al., 2017). This so-called

valence theory, proposing an emotion-specific frontal hemispheric

asymmetry (e.g., Berntson et al., 2011; Grimshaw and Carmel,

2014; Güntürkün et al., 2020) mainly stems from research using

electroencephalography (EEG; Davidson, 1992, 1993; Smith et al.,

2017). However, it has also been partially observed in studies

utilizing functional magnetic resonance imaging (fMRI; Canli et al.,

1998; Beraha et al., 2012) and functional near-infrared spectroscopy

(fNIRS; Balconi and Vanutelli, 2016; Balconi et al., 2017; Hu et al.,

2019).

Hemispheric asymmetries, encompassing both structural and

functional differences, constitute a fundamental principle in

cerebral organization, reflecting the relative dominance of one

hemisphere over the other in a cognitive process (Toga and

Thompson, 2003; Hugdahl, 2011; Ocklenburg et al., 2016; Esteves

et al., 2020; Güntürkün et al., 2020). A prominent example

of hemispheric dominance is observed in hand motor control:

right-handed individuals exhibit left-lateralized processing, while

in left-handed individuals, hemispheric dominance can vary

(Ziemann and Hallett, 2001; Ocklenburg et al., 2013; Guadalupe

et al., 2014; McManus, 2019). Language is another notable

instance of hemispheric asymmetry, predominantly displaying

left-hemispheric dominance (Corballis, 2012; Greve et al., 2013;

Ocklenburg et al., 2014; Wang et al., 2018). Nevertheless, the

right hemisphere also plays a vital role in processing specific

linguistic aspects, such as prosody (Lindell, 2006; Güntürkün et al.,

2020). Additionally, right hemispheric dominance is observed in

various other functions, including face and body perception (Meng

et al., 2012; Dundas et al., 2013; Thoma et al., 2014) as well as

(visual-)spatial attention and processing (Corbetta and Shulman,

2011; Thiebaut de Schotten et al., 2011; Chen and Spence, 2017;

Bartolomeo and Seidel Malkinson, 2019).

In order to investigate hemispheric asymmetries, fNIRS

provides a suitable, non-invasive optical technology that measures

concentration changes of local oxygenated hemoglobin (HbO) and

deoxygenated hemoglobin (HbR) caused by the current metabolic

demand of the cortical brain region (Ferrari and Quaresima, 2012;

Pinti et al., 2020). With its relatively high spatial resolution and

usability, which also facilitates mobile data acquisition, it is gaining

growing attention as a means to investigate the hemodynamic brain

response under more naturalistic conditions (Ayaz et al., 2012;

Benerradi et al., 2019; von Lühmann et al., 2020, 2021).

1.3.1 The asymmetric inhibition model for
emotional distractions

It is essential to highlight that most theories of emotion

processing, such as the valence theory (e.g., Herrington et al.,

2005; Berntson et al., 2011; Smith et al., 2017) or motivational

direction theory (e.g., Sutton and Davidson, 1997; Harmon-Jones

and Allen, 1998), do not explicitly incorporate the interaction

of emotional and cognitive processes. Instead, they tend to

characterize emotional processing in isolation, neglecting to

examine the interplay between cognitive control mechanisms and

emotional processes. For example, results inconsistent with these

established theories of emotion processing have been found in

studies investigating the regulation of emotions (e.g., Compton

et al., 2003; Pérez-Edgar et al., 2013).

An attempt to explain goal-directed behavior with successful

task maintenance and the underlying brain processes during

emotional distractions is made by the asymmetric inhibition model

(Grimshaw and Carmel, 2014). The model posits asymmetries in

executive control mechanisms, where right-lateralized executive

control inhibits the processing of positive or approach-related

distractions, while left-lateralized control serves to inhibit negative

or withdrawal-related distractions. The relationship between the

dominant hemisphere and valence is proposed to be reversed

when it comes to inhibiting task-irrelevant emotions, in contrast

to models that explain the processing of these emotions (Grimshaw

and Carmel, 2014). The authors emphasize the role of the lateral

PFC during the inhibition of task-irrelevant emotions (Gray et al.,

2002; Wager et al., 2003; Ochsner et al., 2012; Grimshaw and

Carmel, 2014). Their assumptions are mainly derived from EEG

and fMRI research with healthy and clinical study samples showing

the reversed asymmetric hemispheric processing (Compton et al.,

2003; Pérez-Edgar et al., 2013).

Gray et al. (2002) investigated the integration of cognitive

processes and emotions and described the process as a convergence

where specialized sub-functions merge into a single, more general

function. Their findings are in line with the asymmetric inhibition

model (Grimshaw and Carmel, 2014), showing greater right lateral

PFC activation during pleasant emotions and left-hemisphere

activation during unpleasant emotions. Importantly, the authors

emphasize that a crossover interaction without significant main
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effects for workload or emotion is required to assume the

integration of cognitive processes and emotions. This indicates

that the observed neuronal activity is not predictable solely from

information about either factor (workload or emotion) on its own.

Instead, it is influenced by the combined interaction of these two

factors (Gray et al., 2002).

At the current state, we have identified three aspects of the

asymmetric inhibition model that warrant further investigation:

First, themodel, along with its supporting evidence, lacks specificity

concerning the integration of emotion and cognition at different

levels of workload. Second, the model’s assumptions have yet to

be examined in any study employing fNIRS. Third, it does not

fully account for stimuli, such as concurrent emotional speech

distractions, that may trigger implicit lateralized processing in

addition to the inhibitory cognitive control processes.

1.4 Research question and hypotheses

Despite first insights into integrating emotions and cognitive

processes, evidence remains inconclusive, especially concerning

the impact of increasing workload levels and naturalistic speech-

related (socio-)emotional distractions on hemispheric asymmetries

of PFC activity.

In this study, our aim was to investigate the neurophysiological

correlates that capture interactions between emotional and

cognitive processes in a naturalistic experimental scenario using

fNIRS. More precisely, we examined the effects of concurrent

emotional speech distractions (positive, negative, or neutral) on

cognitive processes under low and high workload.

We compared the observed brain activation patterns with

the assumptions made by the asymmetric inhibition model

(Grimshaw and Carmel, 2014). We investigated whether the model

assumptions hold true for (a) naturalistic auditory emotional

speech distractions presented concurrently with the task and (b)

increasing workload levels potentially triggering a re-evaluation of

distraction toward a more negative perception.

Our hypothesis was that the integration of emotion and

cognitive process manifests in a significant interaction of valence

of the auditory distractions and workload level (Gray et al., 2002;

Grimshaw and Carmel, 2014).

1. Hypothesis: Based on Grimshaw and Carmel (2014), emotionally

negative distractions should elicit stronger activation in the left

lateral PFC compared to positive distractions; the activation

pattern is expected to remain independent of the concurrent

workload level.

2. Hypothesis: Emotionally positive distractions are assumed to

elicit stronger activation in the right lateral PFC compared

to negative distractions; the activation pattern is expected to

remain independent of the concurrent workload level.

3. Hypothesis: Emotionally neutral distractions are expected to

result in reduced activation in the left lateral PFC compared

to negative distractions and reduced activation in the right

lateral PFC compared to positive distractions in the low

workload condition. However, based on observations in a

feasibility study with EEG (Lingelbach et al., 2021), we

hypothesize a workload-dependent effect for task-irrelevant

neutral distractions. Under high workload, neutral distractions

are assumed to be evaluated as rather emotionally negative,

thereby triggering similar neuronal activation patterns to

emotionally negative distractions, with stronger activation in the

left lateral PFC compared with positive distractions.

• Exploratory hypothesis: Given that naturalistic emotional

speech distractions have been shown to trigger semantic

processing and evaluation associated with left-hemispheric

activation in the IFG (Wildgruber et al., 2004; Friederici,

2012), it is possible that we observe a bias toward left

lateral PFC activation (emotional speech-dependent effect).

However, a potential prerequisite for this phenomenon

could be the availability of sufficient cognitive resources to

comprehensively process the emotional speech distractions.

Therefore, we explore whether we observe a bias toward left

lateral PFC activation for positive distractions during low

workload conditions. Such a finding would contradict the

assumptions of the asymmetric inhibition model, highlighting

potential stimulus-specific dependencies.

2 Methods

2.1 Participants

Volunteers were recruited via emails through mailing lists

as well as social media platforms and screened for eligibility.

Persons reporting insufficient German language skills, limited color

vision, pronounced alcohol consumption, mental, neurological,

or cardiovascular diseases as well as pregnancy were excluded.

Twenty participants took part in the study. Due to minor changes

in the experimental procedure, we had to exclude the first two

participants, leaving a final sample of nine female and nine male

participants (mean age M = 25.9 years, SD = 3.8, range = 21–35;

15 right-handed and 3 left-handed). All participants had a normal

or corrected-to-normal vision, received financial compensation for

their participation, and signed an informed consent in accordance

with the recommendations of the Declaration of Helsinki.

2.2 Procedure

Participants first familiarized themselves with the experimental

task in a practice run. In the experiment, they had to perform

monitoring-control tasks of an air traffic controller while their

brain activity was recorded via fNIRS.

2.2.1 Neurophysiological measures via fNIRS
Data were recorded using the NIRx NIRSport2 system (dual

LEDs emitting light at two wavelengths: 760 and 850 nm) with

the Aurora fNIRS recording software at a sampling rate of 5.8 Hz.

The montage with 14 sources and 14 detectors was determined

using the fNIRSOptodes’ Location Decider (fOLD) toolbox (Zimeo

Morais et al., 2018) in order to optimally investigate the brain

regions of interest i.e., the OFC [Brodmann Area (BA) 11], dlPFC

[BA 9, 46] and vlPFC, comprised of the IFG [BA 47] and Broca’s
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FIGURE 1

(A) Montage of optodes on the fNIRS cap using the standard 10–20 system for sensor location. Labels include the source or detector number (bold)
and 10–20 system position. (B) 3D view of the montage. Red spheres: near-infrared light-emitting sources; brown spheres: detectors; orange
spheres: long channels; red-orange-brown sphere pairs: short channels.

Area [BA 44, 45]; as localized by fOLD. The setup comprised

41 source-detector long channels (hereafter named channels) and

eight short channels (Figure 1). An overview of the channels, MNI

coordinates, and Brodmann Area correspondences is provided in

the Supplementary Table 1.

2.2.2 Experimental task
The experimental task was an adapted version of the warship

commander task (WCT, John et al., 2002; adapted by Becker et al.,

2021), which is a quasi-realistic navy command and control task.

In our version, we used a non-military and safety-critical context.

Participants monitored a simulated radar screen close to an airport

and performed the following subtasks for each uncategorized object

displayed on the radar screen (yellow objects in Figure 2B): (1)

object detection, (2) object categorization, (3) rule application and

decision-making, and (4) rule-based action (Becker et al., 2021).

Objects were categorized as either neutral (i.e., birds; green in

Figure 2B), registered drones (blue in Figure 2B), or non-registered,

thus, safety-critical drones (red in Figure 2B). For the latter, when

entering certain ranges close to the airport, participants had to

first warn (yellow circle) and, then, repel (red circle) them (see

Becker et al., 2021, for a more detailed description). Concurrently

during the task, we presented auditory emotional distractions. For

these, we concatenated either emotionally positive, negative, or

neutral spoken vocal utterances of 2 s length from the validated

Berlin Database of Emotional Speech (Emo-DB; Burkhardt et al.,

2005) into 1-min audio sequences of each emotional condition. The

stimuli of the Emo-DB can be accessed online at https://audeering.

github.io/datasets/datasets/emodb.html. The database consists of

ten neutral phrases extracted from everyday conversations, each

spoken by ten different actors with varying emotional tones,

including anger, neutrality, and joy. Examples of these phrases are:

“What about the bags standing there under the table?” (English

translation; German original: “Was sind denn das für Tüten, die da

unter dem Tisch stehen?") and “The black sheet of paper is located

up there besides the piece of timber.” (“Das schwarze Stück Papier

befindet sich da oben neben dem Holzstück.”; Burkhardt et al.,

2005). Thereby, speakers and phrases of the 2 s sub-sequences were

randomly selected with as little repetition as possible within each

of the 1-min audio sequences. We used a 2 (low and high) × 4

(negative, neutral, positive, and silence) within-subject block design

with eight experimental conditions. Workload was manipulated via

task difficulty by implementing two difficulty levels with 12 to-be-

tracked objects (six non-registered drones) in the low workload

and 36 to-be-tracked objects (17 non-registered drones) in the

high workload condition. Participants completed two rounds,

each comprising eight blocks, with three 1-min trials of the

same experimental condition (Figure 2A). Workload conditions

alternated across blocks, with the start condition alternating across

participants. The order of the emotional distraction conditions

was randomized across blocks with no repetition of the same

condition within a round. Each round started with a resting

state measurement of 30 s. Before each block, except for the

first, participants completed an active baseline condition of very

low workload with six objects (three non-registered drones) and

no emotional distraction (silence). Participants’ performance was

quantified using their reaction time as well as the accuracy of

their actions. The accuracy was operationalized trial-wise with a

score ranging from 0 (low accuracy–low performance) to 1 (high

accuracy–high performance). The score was computed based on

the number of hits, correct rejections, misses, and false alarms,

divided by the maximum achievable score (Becker et al., 2021).

Similarly, the score of the reaction time was computed as a ratio

of achieved points and the maximum of possible points ranging

from 0 (high reaction time–low performance) to 1 (low reaction

time–high performance). Participants received credit points for

the timely repelling of a non-registered drone (<10 s), but also

obtained penalty points for missed or delayed necessary actions

(Becker et al., 2021). After each experimental block, participants
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FIGURE 2

(A) Procedure of the block-design experiment with two di�culties (A and B, i.e., low and high workload) and four auditory distractions (A, B, C, and D,
i.e., negative, neutral, positive, and silence). The presented procedure is illustrative as the workload was alternating and concurrent emotional
distraction was randomized in each round. (B) Illustrative screenshot of the graphical user interface of the experimental task. Users initially had to
perform an identification query for each uncategorized object on the interactive radar screen (left) using “Aeroscope” in the control panel (right). This
step allowed registered drones to be distinguished from unregistered objects. In cases where no registration code was available, users were
prompted to request a camera image. If the camera image showed a bird, the object was to be categorized as “bird” (left). If the camera image
revealed a drone, it was necessary to assign the label “Not OK” (right) to identify it as a potentially threatening drone. If an unregistered safety-critical
drone entered the highlighted radius in close proximity to the airport, users were required to respond accordingly by issuing a warning (yellow circle)
and taking measures to repel the drone (red circle).

rated their subjectively perceived effort (NASA TLX subscale

ranging from 0 to 20; adapted from Hart and Staveland, 1988),

arousal and valence (EmojiGrid ranging from 0 to 10; Toet et al.,

2018).

2.3 Statistical analysis

2.3.1 fNIRS preprocessing
The fNIRS signals were preprocessed using the MNE-Python

(1.1.1; Gramfort et al., 2014) and MNE-NIRS (0.2.1; Luke et al.,

2021) toolboxes, following guidelines by Yücel et al. (2021). Only

experimental conditions with auditory distraction were included

in the following analyses. Additional analyses investigating

task-induced and distraction-induced workload by including the

silence condition can be found in Supplementary Figure S4.

In the first step, raw data were converted into an optical density

measure. We applied channel pruning using the scalp-coupling-

index as a quality measure (Pollonini et al., 2014), with a threshold

below 0.5 to identify and exclude channels with poor quality.

Next, we performed a temporal derivative distribution repair to

account for baseline shifts and spike artifacts (Fishburn et al., 2019).

Afterwards, the modified Beer-Lambert Law was used to transform

the optical density data into HbO and HbR concentration changes

with a partial pathlength factor of 6 (Huppert et al., 2009a;

Gramfort et al., 2014; Luke et al., 2021). Data were then filtered

using a fourth-order zero-phase Butterworth bandpass filter with

cutoff frequencies of 0.05 and 0.7 Hz and a transition bandwidth

of 0.02 and 0.2 Hz to remove instrumental and physiological noise
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(such as heartbeat and respiration). In the last preprocessing step,

we applied a negative correlation enhancement algorithm (Luke

et al., 2021) to further improve the NIRS signal based on the

principle that the true HbO and HbR signals should be negatively

correlated (Cui et al., 2010).

2.3.2 First-level generalized linear models
To investigate the effects of emotional distractions and

workload levels, we used first-level generalized linear models

(GLM) to model the hemodynamic response during the

experimental conditions for each participant using the 60 s long

trials and a canonical statistical parametric map hemodynamic

response function (HRF; Luke et al., 2021; von Lühmann et al.,

2021; Yücel et al., 2021). The GLM approach allows extracting

estimates for each experimental condition and channel. To correct

for systemic signals contaminating the brain activity measured in

the long channels, the HbO and HbR short channel signals were

added as regressors in the first-level GLM (Saager and Berger,

2005; Santosa et al., 2020; Yücel et al., 2021). In our analysis,

we further added a third-order polynomial drift as a regressor

to model low-frequency oscillations in the signals (Yücel et al.,

2021) as well as the active baseline and resting state to account

for interindividual variability. An illustrative example of the GLM

design matrix is provided in the Supplementary Figure S1.

Estimates for the contrasts of interest were obtained

participant-wise using the GLM coefficients (Abraham et al.,

2014).

2.3.3 Second-level linear mixed-e�ects models
The fNIRS second-level analysis was performed with R (version

4.1.1) and pythonTM (version 3.7.7). We used linear mixed-

effects models (LMM; Baayen et al., 2008) to estimate second-

level coefficients based on the participant-wise z-standardized first-

level GLM coefficients using the R packages lme4 (version 1.1-

27.1; Bates et al., 2015) and lmerTest (version 3.1-3, Kuznetsova

et al., 2017). We included participants as random intercepts in the

models to account for non-systematic interindividual differences.

The LMMs provided a second-level estimate per channel for each

chromophore (HbO and HbR) and contrast (Luke et al., 2021).

We first tested contrasts determining interaction effects, and if

the interaction was non-significant, we proceeded to examine the

main emotion and workload effects by averaging over one factor,

respectively. To determine significant channels, we performed

bootstrapping with 5,000 iterations to calculate the 2.5th and 97.5th

confidence interval (CI) of the estimates (Cumming and Finch,

2005). The CI was Bonferroni–corrected for multiple comparisons

using the channel number. For a significant effect, the CI must not

include zero (Cumming and Finch, 2005). Significant standardized

second-level coefficients were visualized by projecting them onto

a 3-dimensional average brain template from both the rostral

and lateral perspectives (Gramfort et al., 2014). To interpret

the interaction effects, we further calculated and visualized (a)

the contrasts of the respective subconditions involved in the

interaction (hereafter referred to as subcontrasts) as well as (b)

the bootstrapped grand average of the first-level GLM estimates,

along with its CI across participants per subcondition for significant

channels (Cumming and Finch, 2005; Garofalo et al., 2022).

2.3.4 Behavioral data
The behavioral data include the subjective ratings of effort,

arousal, and valence, as well as performance measures, specifically

reaction time and accuracy. We analyzed the interaction or main

effects between emotional distractions and workload using non-

parametric bootstrapping and calculated grand averages and their

confidence intervals of the contrasts (Cumming and Finch, 2005).

We calculated the contrasts of interest per participant, starting with

interaction effects. We again proceeded to examine the behavioral

main effects of emotional distraction and workload only in cases

where the interaction was non-significant. The grand average across

participants and the mean’s CI per contrast was estimated using

bootstrapping with 5,000 iterations. Contrasts with their mean’s CI

not including zero are considered significant (Cumming and Finch,

2005).

3 Results

An overview of all fNIRS interaction or main effects along

with their subcontrasts can be found in Supplementary Figure S2

for the HbO and Supplementary Figure S3 for the HbR estimates.

To assess the potential impact of handedness on lateralized brain

activity in the observed effects (Ziemann and Hallett, 2001;

Ocklenburg et al., 2013; Guadalupe et al., 2014; O’Regan and

Serrien, 2018; McManus, 2019), we reanalyzed the second-level

LMMs, incorporating handedness as an additional fixed factor. The

results indicate that handedness had no significant effect in any of

the analyses (Supplementary Table 2).

3.1 Interaction e�ects of emotional
distractions and workload

There were no significant interaction effects in the HbO

estimates (Supplementary Figure S2) or behavioral data

(Supplementary Figures S5, S6).

However, we observed a significant but small interaction effect

in the HbR estimates for negative against positive distractions and

workload levels (Figure 3; Supplementary Table 3). The interaction

revealed a cross-over effect with activity changes in the left IFG

and left temporopolar regions. When comparing the average

mean first-level GLM estimate and its confidence interval in the

significant channel per subcondition (Figure 3A), the interaction is

characterized by lower estimates for negative distractions during

high workload and positive distractions during low workload.

Whereas, higher estimates are observed for positive distractions

during high workload and negative distractions during low

workload. The significant subcontrasts of the interaction further

illustrate decreased HbR estimates, hence increased brain activity,

in the left IFG, during negative distractions with high workload,

compared to both negative distractions during low workload and

positive distractions during high workload (Figure 3B).
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FIGURE 3

Cortical rostral and lateral surface projections of the significant standardized LMM HbR estimates in the interaction e�ect. (A) Bootstrapped mean
first-level GLM estimates and confidence intervals (CIs) across participants per subcondition within the significant channel S9-D11. (B) Subcontrasts
of the interactions calculated between the subconditions and devided in workload and emotion-related e�ects.

3.2 Main e�ects of emotional distractions

Since we did not find any interaction effects in the HbO

estimates or for the HbR contrasts between neutral and negative,

as well as neutral and positive distractions, we proceeded to test for

these main effects of emotional distraction.

We observed significant differences in the HbO estimates for

all three main emotion contrasts and in the HbR estimates for

neutral compared to positive emotional distractions (Figures 4A, B,

upper row). The HbO comparisons between negative and positive

distractions, as well as neutral and positive distractions, revealed

similar activation patterns, exhibiting significantly higher HbO

estimates and stronger recruitment of the left OFC during negative

and neutral distractions (Figure 4A, upper row). Consistent with

the HbO results, lower HbR in the left OFC was observed

during neutral compared to positive distractions (Figure 4B, upper

row). Additionally, comparing negative and positive distractions

showed bilateral frontopolar HbO increases (Figure 4A, upper row,

left). Lastly, a small effect in the HbO responses with decreased

frontopolar involvement was observed when comparing neutral

and negative distractions. However, this effect vanished when

analyzing the subcontrasts per workload level (Figure 4A, middle).

3.2.1 Behavioral e�ects of emotional distractions
When examining the behavioral data, we observed two

non-significant trends of main emotion effects: First, negative

distractions led to an increase in subjective effort compared to

positive distractions. Second, a decrease in performance with longer

reaction times was observed for neutral and negative distractions

compared to positive distractions (green error bars; Figure 5).

3.3 Main e�ects of workload

Due to the significant interaction effect between emotional

distractions and workload in the HbR responses, we solely focused

on testing the main workload effect in the HbO. We observed a

significant HbO main effect of workload, with a slight increase of

HbO, hence increased activity, in the right frontopolar cortex, and

a decrease in the left OFC, during high as opposed to low workload

(Figure 4C, upper row).

3.3.1 Behavioral e�ects of workload
In the behavioral data, a robust modulation was observed for

all workload-related measures, with increased subjective effort and

decreased performance (reaction time and accuracy) during high

compared to low workload (blue error bars; Figure 5).

4 Discussion

Our study investigates interacting cognitive and emotional

processes by examining the brain activation patterns of emotional
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FIGURE 4

Cortical rostral and lateral surface projections of the standardized second-level LMM estimates. Significant HbO (A) and HbR (B) estimates of the
main emotion e�ects (averaged across workload) as well as the respective subcontrasts (per workload level). (C) Significant HbO estimates of the
main workload e�ect (averaged across emotions) and its respective subcontrasts (per emotion).

FIGURE 5

Main emotion (green error bars) and workload (blue error bars) contrasts of the subjective arousal and valence ratings (scale range: 0–10), subjective
e�ort (scale range: 0 to 20), reaction time (scale range: 0–1), and accuracy (scale range: 0–1). Dots and error bars represent the bootstrapped grand
averages and their Bonferroni-corrected 2.5th and 97.5th confidence interval (CI) across participants.
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auditory distractions (positive, negative, and neutral) on cognitive

processes under low and high workload. We opted for a close-

to-naturalistic experimental design, which involved a monitoring-

control task simulating typical air traffic controller requirements,

while emotional speech served as distractions.

4.1 Workload-dependent hemispheric
asymmetries for negative distractions

We hypothesized that the integration of processing emotional

distractions and workload levels should manifest in a significant

interaction of the two factors (Gray et al., 2002). Our results

revealed a significant but small interaction effect in the HbR

concentration changes. Similar effect patterns could not be

observed in the HbO concentration changes.

The HbR interaction indicates the involvement of the left

IFG during the integration of negative distractions compared to

positive distractions and the two workload levels. The workload

level significantly modulated the left IFG recruitment.

We expected stronger left-hemispheric recruitment during

negative compared to positive distractions (Hypothesis 1).

However, when examining the HbR estimates, the activation

pattern interacted with the workload level. Negative distractions

triggered left-hemispheric processing only during high workload

scenarios, and left-hemispheric processing even decreased for

negative distractions compared to positive distractions in low

workload scenarios. Interestingly, the HbR response of the

subcontrast between negative and positive distractions during low

workload indicated an increased involvement of the right IFG

and OFC during negative distractions. From these observations,

one might conclude that a certain level of workload is necessary

to trigger left-hemispheric inhibitory processes during negative

distractions, consistent with the asymmetric inhibition model.

During lower workload levels, when sufficient processing capacities

are available, the auditory emotional stimulation might not have

been perceived as a distraction requiring inhibition. In such a

scenario, emotional stimuli might have been processed according

to the valence theory (Davidson, 1993; Berntson et al., 2011;

Smith et al., 2017), triggering right hemispheric processing during

negative stimuli and left hemispheric processing during positive

ones. However, inconsistencies between the HbR and HbO effects

challenge the interpretation of the results. Although we did not

observe an HbO interaction effect, the activation patterns of the

main emotion effect support left-hemispheric processing during

negative distractions, in agreement with the asymmetric inhibition

model (Grimshaw and Carmel, 2014).

Apart from activation patterns in the IFG and OFC, negative

distractions evoked bilateral frontopolar activity when compared

to positive distractions and right frontopolar activity when

compared to neutral distractions (HbO main emotion effects).

The frontopolar cortex is suggested to play a crucial role in goal-

oriented executive functions and cognitive control (Niendam et al.,

2012), particularly in prioritizing competing goals and multiple

subtasks (Mansouri et al., 2017). Anticevic et al. (2010) reported a

connection between performance and reduced deactivation in the

frontopolar cortex, suggesting its involvement in resisting negative

interference during cognitive tasks. Similarly, Feng et al. (2021)

found decreased frontopolar activation and performance during

negative compared to neutral affective states in higher working

memory load levels, indicating a failure to resist the negative

interference. Consequently, the frontopolar activation observed in

our study during negative distractions compared to positive and

neutral distractions might indicate the engagement of cognitive

control processes. These frontopolar processes could potentially

work in tandem with emotion-specific hemispheric inhibitory

processes and aim at prioritizing the workload task while effectively

overcoming task-irrelevant distractions.

To conclude, we observed the expected left hemispheric

processing with involvement of the left OFC and IFG, as

well as frontopolar areas, during negative distractions. However,

left hemispheric processing was particularly prominent during

high workload, suggesting that increased workload enhances the

asymmetric processing effect elicited by negative distractions.

4.2 Right-hemispheric processing for
positive distractions

We did not observe clear right-hemispheric recruitment during

positive compared to negative distractions and have to reject our

second hypothesis.We even observed decreased right OFC and IFG

activity in the HbR subcontrast of low workload when comparing

negative and positive distractions. However, when investigating

the HbO main workload effect, we observed a small effect in

the subcontrast for positive distractions indicating that right

frontopolar processes were triggered during high compared to low

workload. As we only observed this effect in the HbO subcontrast

and not in the HbO main emotion contrasts related to negative

or neutral distractions, it is possible that the distraction’s impact

and the subsequent requirement to suppress positive auditory

stimuli through right-hemispheric (Grimshaw and Carmel, 2014)

and frontopolar processes (Anticevic et al., 2010; Niendam et al.,

2012; Mansouri et al., 2017) were relatively minimal.

4.3 Workload-independent negativity bias
for neutral distractions

Since we did not observe right-hemispheric inhibitory

processes triggered during positive distractions, our third

hypothesis regarding differences between neutral and positive

distractions during low workload was not confirmed. Regarding

the comparison between neutral and negative distractions, we

observed reduced right-hemispheric frontopolar activity, instead

of the expected reduced left-hemispheric processing. Less cognitive

control processes were triggered during neutral compared to

negative distraction, independent of the workload level (HbOmain

emotion effect). These processes observed in the right frontopolar

cortex do not entirely align with the asymmetric inhibition model

(Grimshaw and Carmel, 2014).

We hypothesized a workload-dependent effect for neutral

distractions, characterized by a negativity bias when experiencing

high workload. However, one main finding of the study was that
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the negativity bias for neutral distractions was consistently present,

irrespective of the workload level. Neutral and negative distractions

elicited comparable activation patterns in the left OFC and IFG,

compared to positive distractions, and exhibited no significant

difference in left-hemispheric processing when contrasted against

each other (HbO and HbR main emotion effects). The negativity

bias for neutral distractions could be particularly pronounced

for auditory stimuli, given their highly intrusive nature and

the challenges associated with avoidance strategies (e.g., humans

cannot close their ears and shifting the attentional focus away from

auditory input is difficult; Berti and Schröger, 2001; Rau et al.,

2020). Differences between the auditory and visual systems might

also explain why other studies using visual emotional stimuli did

not report a negativity bias for neutral distractions (García-Pacios

et al., 2015a,b).

4.4 Left-hemispheric processing of
emotional speech distractions

Since semantic processing and evaluation of emotional speech

is associated with left-hemispheric activation in the IFG (Gabrieli

et al., 1998; Zahn et al., 2000; Wildgruber et al., 2004; Friederici,

2012), we also hypothesized a left-hemispheric lateral processing

bias for positive distractions during low workload. Interestingly,

we observed lower HbR estimates and, thus, increased activity in

the left IFG during positive distractions and low workload (HbR

interaction effect). The subcontrasts between negative and positive

distractions revealed a smaller effect in the low compared to the

high workload contrast, indicating less difference between the

subconditions in the left IFG recruitment. Consequently, the IFG

involvement can be attributed to asymmetric inhibition processes

on the one hand, but on the other hand, it may also be related

to semantic processing and evaluation of the emotional speech

(Gabrieli et al., 1998; Zahn et al., 2000), at least for positive

distraction under low workload. Therefore, our findings indicate

that participants could thoroughly process emotionally positive

utterances during low workload and evaluate the stimuli regarding

their self-related (social) relevance (Gabrieli et al., 1998; Zahn et al.,

2000). We cannot rule out the possibility that sufficient cognitive

resources were available to semantically process the negative and

neutral emotional speech, hence engaging the left IFG besides its

involvement in inhibitory processes. This is because we did not

compare them to non-semantic negative and neutral utterances,

but only to positive emotional speech. The prerequisite of available

cognitive resources to process and evaluate the emotional speech

is also supported by the HbO main workload effect, suggesting

a workload-related modulation of left IFG recruitment. The left

IFG was less activated during high workload scenarios, in which

fewer cognitive resources were available and semantic processing

was reduced. Thus, we conclude that the left IFG appears to play

a crucial role not only in inhibiting negative distractions, but also

in processing and evaluating emotional speech, when sufficient

cognitive resources are available. Stimulus- and workload-specific

effects are currently not integrated into the asymmetric inhibition

model (Grimshaw and Carmel, 2014).

4.5 General discussion

We could pinpoint hemispheric asymmetries in the PFC

involvement during the interaction between emotion and

cognition in a close-to-naturalistic experimental setting.

Consistent with previous studies and theories, our findings

indicate the specific PFC areas, including the left IFG and OFC,

are involved during interacting emotional and cognitive processes.

Moreover, we extended the understanding of hemispheric-specific

inhibitory processes during negative and positive, but also neutral

distractions, by examining workload-dependent and speech-

specific effects. The lateralized hemispheric processing in the

PFC is influenced by both workload level and emotional speech

distractions. Therefore, the availability of cognitive resources

and specific stimulus characteristics of emotional distractions

significantly influence hemispheric asymmetries during the

processing and inhibition of the stimuli.

One main goal of the study was to investigate whether

assumptions of the asymmetric inhibition model (Grimshaw and

Carmel, 2014) hold true with naturalistic auditory emotional

speech distractions and a human-machine monitoring task, under

multiple workload levels. From our findings, we conclude that the

proposedmodel fails to specify and address influencing factors such

as increased workload or emotional language processing during

the hemispheric asymmetric inhibition of emotional distractions.

Furthermore, while the model suggests an interaction between

emotional and cognitive processes, it does not specify the precise

nature of this interaction. Through our study, we have contributed

to a better understanding of how asymmetric inhibition processes

in the PFC interact with different workload levels.

When investigating the interaction of workload and emotional

speech distraction, we were confronted with the challenge

of disentangling left hemispheric processes associated with

inhibition from those related to semantic processing of emotional

speech distractions. Future research could address this by

incorporating non-semantic emotional stimuli, allowing for a

better understanding of the interplay between workload and

semantic processing and the allocation of left hemispheric

activation between inhibition and speech-related processes.

Besides speech-related processes, various other factors can

influence lateralized brain activation during different emotional

distractions and workload levels. Previous research has shown

that stimuli with emotional prosody tend to elicit stronger right-

hemispheric processing compared to neutral ones (Buchanan et al.,

2000; Lindell, 2006). In our study, we observed a slight decrease in

right frontopolar activity during the inhibition of neutral compared

to negative distractions. Hence, it is possible that emotional

prosody played a role in modulating the asymmetric processing.

Our task required constant visuospatial processing, including

considerations such as object distances from airport safety regions

and frequent reallocation of attention. The reallocation occurred

not only during performing the task (e.g., switching between the

radar screen and control panel) but also during the inhibition

of distractions to focus on goal-directed actions. These cognitive

processes are positively correlated with task difficulty and workload

(Chen and Spence, 2017), and, therefore, contribute to the observed

brain patterns when comparing different workload levels. In
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addition, further experimental parameters like the number of

visual stimuli and their timing may have affected hemispheric

asymmetries in the processing (Stevens et al., 2011; Felisatti et al.,

2020). Attentional and spatial processes tend to evoke right-

lateralized brain activity, particularly in temporal, parietal, and

occipital regions (Yamaguchi et al., 2000; Yovel et al., 2001; Han

et al., 2002; Corbetta and Shulman, 2011; Thiebaut de Schotten

et al., 2011; Chen and Spence, 2017; Bartolomeo and Seidel

Malkinson, 2019). However, it is worth noting that certain frontal

regions which are part of attentional networks, such as the vlPFC

(Bartolomeo and Seidel Malkinson, 2019), may also have been

influenced by these task-related components. Finally, although

participants did not explicitly report specific strategies for solving

themonitoring-control task, it is important to consider that various

mnemonic strategies could have also modulated hemispheric

processing (Dörfel et al., 2014; Picó-Pérez et al., 2017).

To investigate such influencing factors, researchers might

expand fNIRS measurements to encompass the entire cortex. This

could further provide an opportunity to examine communication

processes between frontal and posterior regions (e.g., the temporal

and parietal cortex) involved in the inhibition of emotional

distractions and maintenance of task-related processes (Sörqvist

et al., 2016; García-Pacios et al., 2017; Scheunemann et al., 2018).

Another goal of future research could be the investigation of

time signatures during subprocesses of the emotion-cognition

interaction; for instance, by combining fNIRS with a high temporal

resolution method like a magnetencephalography or EEG (García-

Pacios et al., 2015a, 2017).

During the interpretation of our results, we encountered the

issue that certain effects were observed in the HbR analysis but

not in the HbO analysis (for general discussions, see Pinti et al.,

2020; Kinder et al., 2022). Glotzbach et al. (2011) investigated the

neuronal signatures of the prefrontal cortex (PFC) during emotion

induction and regulation. Similar to our results, they also reported

significant changes in HbR but not HbO concentration over the

left PFC during the regulation of emotions. Although changes in

the HbO concentration generally tend to be of higher amplitude

and have a higher signal-to-noise-ratio (Pinti et al., 2020), some

studies reported a caveat of potentially confounding physiological

interferences (Kirilina et al., 2012; Haeussinger et al., 2014;

Tachtsidis and Scholkmann, 2016). HbR concentration changes are

suggested to be less influenced by systemic physiological artifacts

like cardiac activity, respiration, or Mayer wave fluctuations (Obrig

et al., 2000; Huppert et al., 2009b; Zhang et al., 2009; Pinti et al.,

2020). Due to the small effects and inconsistencies between HbO

and HbR, as well as our rather small sample size, we encourage

other researchers and future studies to replicate the experiment in

order to ensure the robustness of the observed effects of emotional

speech distractions and workload levels.

Our choice of a close-to-naturalistic experimental paradigm is

akin to a double-edged sword, offering advantages of increased

ecological validity but also possessing inherent limitations due

to less controlled settings. This approach carries a chance

of unintended confounding factors, which can be difficult to

disentangle, alongwith potential movement-related artifacts during

the task. The introduced variability may mask small effects

and result in reduced statistical power compared to highly

controlled laboratory experiments. However, researchers have long

advocated a two-pronged approach, consisting of complementary

laboratory and naturalistic studies, as well as multi-method

approaches (Parrott and Hertel, 1999). To answer the question

of how emotional and cognitive processes interact and which

factors decisively influence these processes, naturalistic studies

are necessary to verify ideas and theories, developed and tested

in the laboratory, under more realistic circumstances. The

manipulation strength of the stimulus material and task plays a

key role in close-to-naturalistic experiments (Peck et al., 2014;

Westgarth et al., 2021). Although we chose a naturalistic database

with semantically intelligible content for the emotional speech

distractions (Burkhardt et al., 2005), sequences were still rather

short and not embedded in a meaningful context. The lack of a

meaningful context might have reduced the strength of emotional

manipulation. Therefore, future studies could consider using

validated emotional dialogues and longer sequences, providing a

comprehensible and coherent context (Lingelbach et al., 2023).

4.6 Conclusion

To investigate PFC activation patterns of interacting cognitive

and emotional processes, we performed a close-to-naturalistic

fNIRS study with low and high workload task scenarios and

concurrent emotional distractions differing in their valence. Our

results revealed the following findings: (1) a cross-over interaction

indicating workload-dependent hemispheric asymmetries during

the processing of negative and positive distractions at different

workload levels, (2) a workload-independent negativity bias for

neutral speech distractions, and (3) potential additional left-

hemispheric effects of emotional speech processing and evaluation

during positive distractions with sufficient processing capacity.

Through investigating workload-dependent and stimulus-specific

effects, we have deepened the understanding of the factors that

influence hemispheric asymmetries during the processing and

inhibition of emotional distractions, as well as the interaction

between emotion and cognition.
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