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Figure 1: Overview of the experimental set-up and illustrative placement of the sensors.

ABSTRACT
Objective: We investigate experienced joy of use (JoU) and usabil-
ity using a multimodal methods approach by systematically vary-
ing mobile phone interactions. Methods: We combined subjective
and objective measures to investigate whether positive emotional
experiences and moments of joy during the interaction can be dis-
tinguished from neutral and negative emotional experiences. In a
study with 30 participants, electroencephalography (EEG), electro-
cardiography (ECG), electrodermal activity (EDA), facial emotion
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recognition, and questionnaires were used. Results: There were
greater positive experiences in interactions designed to elicit JoU,
even under bad usability. We did not observe a difference between
the conditions in the EEG indices. However, a higher heart rate and
components in the EDA phasic response as well as facial muscle
activity associated with anger were linked to good usability com-
binedwith no JoU.Conclusion: Themultimodal methods approach
reveals great potential to investigate JoU and usability in natural-
istic scenarios. Application: The developed framework provides
a groundwork to evaluate and improve interactions with technol-
ogy. Thereby, users and their emotional experiences are placed at
the centre when designing user interfaces. By detecting moments
of joy, this approach can support a better understanding of how
technology can be purposefully designed for joyful experiences.
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1 INTRODUCTION
When we interact with technology, it is the experienced emotions,
such as joy or frustration that determine how we evaluate the in-
teraction and the product itself [42, 46]. While former studies have
focused primarily on usability factors to predict user judgments,
recent research increasingly includes emotional dimensions for ex-
plaining user evaluations. Previous approaches assume that overall
user experience is determined in a hierarchical way, with function-
ality and then usability acting as the most important factors, and
other factors like pleasure or joy playing a less crucial role (e.g.,
[34]). This has been called into question, with authors claiming that
hedonic elements contributing to the joy of use (JoU), such as fun
or psychological need fulfilment, are just as important if not even
more important than basic usability (e.g., [25]). Several studies and
models aimed to describe the relationship between the two compo-
nents usability and JoU for the overall user experience. Hassenzahl
et al. [26] introduced two factors affecting users’ evaluations: (1)
pragmatic quality describing goal-oriented functions and perceived
usability, and (2) hedonic quality describing rather facets of positive
user experience and JoU such as psychological needs of novelty
and augmentation [27, 30].

1.1 The usability-joy of use framework
Therefore, in order to adequately understand the psychology of
human-technology interaction, we will need two complementary
perspectives: (1) usability (U), which is the “extent to which a prod-
uct can be used (. . . ) to achieve specified goals with effectiveness,
efficiency, and satisfaction (. . . )”[1], and (2) joy of use (JoU) which
is the positive hedonic assessment. Figure 2 provides an overview
of the framework underlying this study.

JoU describes a holistic concept beyond pure task fulfilment. It
is determined by (i) aesthetic properties [5, 11, 79], (ii) moments of
»Wow« (i.e., positively perceived surprise, [74]), and (iii) fulfilment
of individual needs [28, 56, 68]. Aesthetic properties can be either
of narrative (e.g., deeper meaning) or perceptual nature [45]. They
are associated with both a hedonic, beautiful is useful, as well as a
pragmatic halo effect, useful is beautiful [49]. Both effects lead to
higher quality perceptions, attractiveness, and intention to use a
product [5]. Surprise and related concepts such asWow, have to date
received relatively sparse literature coverage and understanding.

Figure 2: Theoretical framework of the study: Usability (y-
axis) and Joy of Use (x-axis) are systematically varied.

Desmet and Fokkinga [14], Desmet et al. [15] measured theWow ex-
perience of products and describedWow as an emotional experience
comprising three factors (1) fascination, (2) desire, and (3) pleasant
surprise. Väänänen-Vainio-Mattila et al. [74] examinedWow effects
in the context of cloud applications with qualitative user interviews
and suggested long-term positive feelings towards such products
or services. However, they describe challenges like inappropriate
scenarios (e.g., under stressful conditions) or potential cultural dif-
ferences regarding norms and expectations for evoking Wow. Gross
and Thüring [23] explored surprise and unexpected events with
either desirable or undesirable consequences. Their results suggest
that only positive surprises enhancing goal achievement without
distracting or impeding the interaction and goal-directed behaviour
were evaluated positively (see also [22]).
Several studies examined how fulfilment of psychological needs is
associated with satisfaction and positive emotions [14, 60, 67]. Fur-
ther research extracted needs with specific relevance for positive
user experiences during the interaction with technology [18, 24].
For the current study, we selected five needs that were considered
as particularly important in the specific context of mobile phone
interaction. The consideration was done in an extensive workshop
with professionals in the field of mobile phone interactions and
researchers in needs-based design. Needs generally evoke positive
user experience [68]. The following five needs were evaluated as
particularly important to create a positive user experience while
using a mobile phone:

• stimulation,
• relatedness,
• competence,
• self-expression/autonomy,
• and luxury.

1.2 Multimodal methods approach
A majority of studies on positive user experience use subjective
evaluations like questionnaires (see [75] for a review), albeit these
methods are prone to potential bias of post-hoc evaluations and
socially desirable answers [51]. Objective physiological (e.g., elec-
trodermal activity; EDA, and electrocardiography; ECG) and neuro-
physiological measures (e.g., electroencephalography, EEG) provide
an unbiased alternative and allow to detect emotional evaluations
without disturbing the interaction or task [75]. The use of a multi-
modal methods approach stems from the idea that insights from
different sources can (1) complement each other and (2) compen-
sate respective weaknesses [50, 57]. The combination of subjective
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and (neuro-)physiological approaches enables a comprehensive,
holistic, and robust understanding of the phenomena investigated
[57]. The circumplex model of affect [63] suggests that affective
states are composed by two diametric neurophysiological systems,
namely (a) valence (i.e., continuous evaluation of pleasant vs. un-
pleasant states) and, (b) arousal (i.e., continuous measure of physical
activation; see [59], for a review). Joy and hence JoU, is strongly
positively correlated with valence and moderately to strongly cor-
related with arousal [5, 59]. While physiological measures such as
heart rate variability or electrodermal activity are well-suited to
capture arousal [19, 43, 77], neurophysiological methods measuring
brain activity (e.g., captured via EEG recordings) allow identifying
differences in valence (e.g., [9]). The frontal alpha asymmetry (FAA)
measured in EEG is well-suited as an index distinguishing positive
and negative emotions [2, 36, 37, 73]. Stimuli rated as positive are
associated with greater relative left-hemispheric alpha activation
in frontal electrodes, while stimuli rated as negative reveal greater
relative right-hemispheric frontal activation [2, 6, 9]. Ekman [16]
introduced a further theory with discrete basic emotions cross-
culturally shared and distinguishable via facial muscle activity [62].
Recent studies revealed the potential of facial expressions to pre-
dict consumer liking, preference, and intent to purchase a product
[47, 64]. Especially camera-based facial expression recognition is a
suitable, easy-to-use method to identify positive and negative user
experience via computer algorithms [55].
In this study, we, therefore, explored a converging multimodal
methods approach combining subjective and objective measures to
investigate (1) whether positive and negative emotional experiences
can be distinguished based on activation patterns of the central and
peripheral nervous system and (2) whether we can detect moments
of joy during the interaction with technology. We examined the
specific relation and interdependence between usability and JoU
in a naturalistic setting by using typical mobile phone interaction
scenarios. (1) We hypothesize that high levels of JoU are associated
with positive emotional experiences reflected in more positive sub-
jective user ratings (valence, Wow, visual aesthetics, fulfilled needs),
as well as greater left-hemispheric frontal alpha activation, a higher
engagement index and lower workload index, and activation in
facial muscles associated with positive emotions. Low levels of us-
ability, however, should elicit negative emotions and lower valence
ratings compared to positive emotions. Furthermore, we explored
(2) which aspects of the user interaction design can evoke positive
user experiences. For this purpose, we systematically varied the
usability and JoU in the interaction scenarios.

2 METHODS
2.1 Participants
A total of 30 healthy, examined by self-reports in an online screen-
ing, participants took part in this study (19 female; age: 18 to
36 years with M = 25.50; SD = 4.93). Participants were recruited
through the participant pool of the Fraunhofer IAO and received
monetary reward to compensate for time and travel costs. All partic-
ipants had normal or corrected-to-normal vision and were screened
for their suitability to participate in an EEG study, to be right-
handed (since influences of handedness on hemispheric asymmetry
cannot be excluded; [52]), and to show adequate language skills.

Prior to the experiment, they signed a written informed consent ac-
cording to the recommendations of the declaration of Helsinki. The
study was approved by the local ethics committee of the Medical
Faculty of the University of Tuebingen, Germany (ID: 886/2019BO2).
Four participants had to be excluded in the EEG analysis because
no artefact-free EEG signal could be obtained. For the analysis of
facial expressions, another set of four participants were excluded
due to technical problems during the recording.

2.2 Materials
We measured EDA and ECG (arousal) as well as EEG and camera-
based facial expression recognition (valence) during the interaction.
Stimuli were presented on a Mate 20 Pro Huawei (screen size: 6.39
inches, resolution: 1440 x 3120 pixels). To avoid recognizing the
smartphone brand, all signs were covered or removed in advance.
The mobile phone was placed in a stand on a desk in front of the
participant with a maximum distance of 30 cm. A web-camera
(Logitech HD Pro Webcam C920) was positioned on top to extract
the facial muscle activity (i.e., action units; AUs; [17]) frame by
frame via the iMotions Biometric Research Platform [33] software.
Frames were sampled at 102.4 Hz and aligned as a pre-processing
step within iMotions. For the facial expression recognition, we ex-
plored the AFFDEX algorithm classifying seven basic emotions [70].
We recorded scalp EEG potentials according to the international
10-20 system with 32 electrodes (actiCAP, Brainproducts GmbH,
Germany). The left mastoid was used as common reference and
EEG was grounded to FCz. Impedance of electrodes was kept below
20 kΩ at the onset of each session. EEG data was digitized at 1
kHz, high-pass filtered with a time constant of 10 s, and stored for
off-line analysis using the BrainVision Recorder Software (Brain-
Products GmbH, Germany). ECG was recorded according to the
Einthoven technique with electrodes placed on the left clavicle, at
the sternum and the ground electrode at the left elbow (BrainAmp,
Brainproducts GmbH, Germany). The data was digitized at 1 kHz us-
ing the BrainVision Recorder Software. EDAwas recorded using the
wearable Shimmer3 GSR + Unit and iMotions software with a digi-
tization at 128 Hz. We mounted electrodes on the fingertips of the
left index finger and middle finger. Figure 1 provides an overview
of the experimental set-up and illustrative sensor placement. The
unified collection of multimodal signals from the different record-
ing and presentation systems were synchronized and stored for
off-line data analysis using Lab Streaming Layer (LSL), a web-based
JavaScript application (stimulus presentation) in combination with
TCP protocols, a wireless access-point, and the iMotions platform.
Subjective measurements were collected via LimeSurvey [71].

2.3 Stimuli and design
We designed specific user interface mock-ups for three mobile
phone scenarios: (1) onboarding (i.e., set-up process at first use),
(2) general settings (changing Wifi settings, background, and un-
locking method), and (3) calendar (making an entry and sharing
it). The interaction scenarios were developed based on the cri-
teria of the JoU model (aesthetics, Wow, needs) and selected to
represent everyday common use, ensuring familiarity, and intu-
itive handling. Each scenario was designed for four conditions
(A) low JoU – high U, (B) high JoU – high U, (C) low JoU – low
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Table 1: Overview of the number of stimuli in each scenario-
condition combination.

Calender General
Settings Onboarding N

low JoU - high U 17 47 50 114
high JoU – high U 17 39 26 82
low JoU – low U 15 43 47 105
high JoU – low U 12 30 19 61

Figure 3: Overview of the experimental procedure with the
four conditions (A) low JoU – high U, (B) high JoU – high U,
(C) low JoU – low U, and (D) high JoU – low U and three in-
teraction scenarios onboarding (O), general settings (S), and
calendar (C).

U, and (D) high JoU – low U (see Figure 2). The 12 interactions
(three scenarios, four conditions) were prototyped in B.V. [8] and
exported as html-files via Anima [3]. The html-files as well as il-
lustrative videos of the scenarios are online accessible under https:
//osf.io/g865s/?view_only=c99fe513ba934aca8d072e836754144a. In-
teractions lasted between 21 s to 12 min and 26 s. 1 provides an
overview of the number of stimuli for each scenario-condition
combination. We randomized the order across participants.

2.4 Procedure
Prior to the experiment, participants were informed about muscle
and movement artefacts in all recordings and instructed to keep
movements to a minimum. They were comfortably seated in a quiet
room. An overview of the experimental procedure is provided in
Figure 3. The experiment started with a three-minute EEG, ECG
and EDA baseline recording during relaxation with eyes fixating a
crosshair on a computer screen in front of the participant. All partic-
ipants explored each scenario-condition combination, resulting in
12 blocks. They were instructed to explore the interactive scenarios
and complete small pre-defined tasks (e.g., setting an appointment
in the calendar).

After each block, a composite JoU questionnaire was provided
to analyse subjective experiences of the interaction. Subscales com-
prised the following constructs: (1) Arousal and valence were ex-
amined on a continuous visual scale ranging from 0 to 9 via the
Emoji Grid [72]. (2) The Nasa Task Load Index (TLX; [32]) exam-
ines usability factors on an adapted sliding scale ranging from 0
to 100. (3) The Extended User Experience Questionnaire (UEQ+;
[65]) was used to assess visual aesthetics, as well as Wow, the latter

via the subscale originality and stimulation, on a 7-point Likert
scale. Psychological needs were measured on a 5-point Likert scale
using the meCUE luxury subscale [48], and an adapted version of
the need-based questionnaire for the items examining competence,
relatedness, and autonomy [67]. In addition, we asked participants
to rate their general satisfaction on a scale ranging from 1 to 6 and
provide positive and negative feedback within two open-format
items.

2.5 Analysis
All data-analyses were performed with custom written scripts in
pythonTM, JASP 0.13.1, and IBM SPSS® Statistics 20. Means and
standard deviations of the measures per conditions are provided in
Table 1 and 2 in the Supplementary Material.

2.5.1 Subjective measures. We used repeated measure analyses of
variance (rmANOVA) with condition as a within-subject factor (A,
B, C, D). If sphericity was violated, Greenhouse-Geisser correction
was chosen. To examine the differences within conditions, we com-
puted contrasts using t-test and a Bonferroni multiple-comparison
correction (Table 3). Furthermore, effect sizes (partial eta squared)
of the main effects are provided for parametric analyses with η2p
of .01 indicating a small, η2p of .06 indicating a medium, and η2p of
.14 indicating a large effect [12, 61].

2.5.2 Objectivemeasures. In the EEG pre-processing, we de-trended,
zero-padded, and re-referenced the data to a common average ref-
erence (CAR). We excluded seven EEG channels (FT9, FT10, Oz,
TP9, TP10, T8, and T7) due to artefact contamination. Data was
band-pass filtered between 1 to 40 Hz (first order zero-phase lag FIR
filter). Afterwards, epochs of the length of 4 s were extracted start-
ing at the stimulus-onset and grouped into the four experimental
conditions. We rejected epochs containing a maximum deviation
above 180 µV in any of the frontal and occipital EEG channels (Fp1,
Fp2, F7, F8, O1, O2). To remove further cardiac-related and muscular
artefacts as well as ocular movement, we performed an independent
component analysis (ICA) on the epoched data using the extended
infomax ICA algorithm [40] as implemented in the MNE-Python
toolbox [21]. Artefact-contaminated components were manually
selected after visual inspection of the topography, times course,
and power spectral intensity [10, 31]. After pre-processing, we cal-
culated EEG power spectra using a modified version of the Fast
Fourier Transformation (FFT), the so-called Welch’s method, for
the individual electrodes in the frequency range 1 to 35 Hz as im-
plemented in the MNE-Python toolbox [21]. Resting state data used
for normalizing power spectra in each frequency band was pre-
processed as described above using non-overlapping epochs of 2 s.
From the calculated power spectra, we derived indices specifically
suitable to examine user experience and usability comprising the
(1) mental workload index (WL), (2) visuo-motoric engagement in-
dex (EI), and (3) frontal alpha asymmetry index (FAA). Frequencies
of interest were the theta (4 – 7 Hz), alpha (8 – 13 Hz), and beta
band (15 – 25 Hz). Before the EEG indices were calculated, data
was log-transformed to dB scale and normalized to the mean and
standard deviation of the resting state.
We calculated the WL-index [7, 20, 35, 54] by dividing the average
theta band power in Fz by the average power in the alpha band of

https://osf.io/g865s/?view_only=c99fe513ba934aca8d072e836754144a
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Pz:
WL =

Frontal Theta Band

Parietal Alpha Band
(1)

The EI-index associated with visuo-motoric information processing
and coordination was calculated according to Pope et al. [58] and
Dehais et al. [13]:

EI =
Beta Band

Theta Band + Alpha Band
(2)

Hence, we divided the average beta by the sum of the average theta
and alpha band power over six EEG central and parietal electrodes
(C3, Cz, C4, P3, Pz, and P4). For the calculation of the FAA, we
subtracted the average alpha band power in F3 (left hemisphere)
from F4 (right hemisphere):

FAA = Riдht Alpha Band − Le f t Alpha Band (3)

For the ECG pre-processing, we processed the data to acquire the
inter-beat interval (IBI) which is the inverse of the heart rate (HR).
The ECG signal was band-pass filtered between 5 and 15 Hz using
a third order Butterworth filter and artefact-corrected according
to Lipponen and Tarvainen [41]. Peaks were detected following
Pan and Tompkins [53]. We transformed the IBI semi-time series
into a timeseries by interpolating consecutive IBIs (quadratic spline
interpolation), resampled at 512 Hz, and transformed the IBI to
HR. ECG and EDA data analysis was performed with the neurokit2
toolbox in pythonTM [44]. The EDA signal was low-passed filtered
with a cut-off frequency of 1 Hz followed by a moving average
smoothing using a linear convolution with a filter kernel size of
0.75 * sampling rate and a boxzen window. Phasic and tonic com-
ponents were extracted using a convex optimization model with
the cvxEDA algorithm. For the statistical comparison of the ECG
and EDA, we cut event-locked epochs of the length of 7 s after
stimulus-onset. As a baseline correction, we subtracted the average
signal of a baseline interval ranging from 400 ms prior to stimulus-
onset. The data was normalized by z-scoring signals with the mean
and standard deviation of the resting state. For the ECG statistical
analysis, we extracted the mean, minimum, maximum value of the
HR of each epoch separately for the four experimental conditions.
For the EDA analysis, we extracted the mean, maximum value, peak
onset and amplitude of the phasic response including and exclud-
ing the tonic component of the skin conductance responses (SCR)
from the phasic component. For the facial expression recognition,
we analyzed values of the seven basic emotions (1) joy, (2) fear,
(3) disgust, (4) sadness, (5) anger, (6) surprise, and (7) contempt.
We only used frames with a pitch value between −10◦ to +20◦ as
well as roll and yaw values between −10◦ and +10◦, since values
can be reliably estimated within this frame interval. A baseline of
200 ms was extracted before each stimulus-onset and subtracted
from the raw signal to account for inter-subject-variability. We cut
epochs of the length of 4 s after stimulus-onset and normalized
the data by z-scoring it with the mean and standard deviation over
all epochs. For the statistical analysis, we extracted the median
of a non-overlapping sliding window of 500 ms for each epoch
and averaged it over epochs for each condition, separately. For
the comparison of conditions in the objective measures, we used
non-parametric Friedman’s Q tests to account for non-normally
distributed data and outliers. To examine exact differences, nonpara-
metric Wilcoxon signed ranks tests were conducted and corrected

Figure 4: Ratings in the Emoji Grid for the four conditions
(A) low JoU – high U, (B) high JoU – high U, (C) low JoU –
low U, and (D) high JoU – low U. The x-axis represents the
valence dimension, while the y-axis represents the arousal
dimension.

for multiple comparisons using the false discovery rate (FDR) with
the Benjamini-Hochberg method.

3 RESULTS
3.1 Subjective measures
3.1.1 Arousal and Valence. Figure 4 shows ratings in the Emoji
Grid examining subjectively perceived arousal and valence. Since
the data was non-normally distributed a non-parametric statistical
analysis was chosen. It revealed a significant difference between
conditions (Table 2) for arousal and valence. B was rated signifi-
cantly more arousing than A and D (Table 3). For the valence ratings,
C was rated significantly more negative compared to A, B, and D;
and B significantly more positive than D. Wow. Wow revealed a
significant main effect for condition with B triggering Wow on a
high level. There were significant differences between A compared
to B and D as well as C compared to B and D.

3.1.2 Aesthetic pleasure. Furthermore, conditions differed in their
aesthetic pleasure with higher ratings in B compared to A, C and D.

3.1.3 Individual needs. Regarding the experienced stimulation and
luxury, the conditions were rated differently with B triggering stim-
ulation on a significantly higher level compared to A, C, and D and
was rated as more luxurious compared to A and C. However, there
was no difference between B and D for the latter, indicating that
luxury can be evoked even when bad usability is experienced. Re-
garding competence, we found no difference between the conditions.
Furthermore, means were rather low indicating that competence
could not be evoked successfully in all conditions. However, for
relatedness, we observed a significant main effect for the conditions
with significantly higher ratings in B compared to A and C. There
was no significant difference in D indicating that relatedness could
be evoked even under usability problems. Ratings of autonomy
showed a significant main effect for condition with B differed to all
other conditions.

3.1.4 Usability. The conditions differed significantly in effort with
significantly lower ratings in B compared to C and D. However,
there was no difference to A indicating that usability plays an



MuC ’22, September 4–7, 2022, Darmstadt, Germany Lingelbach et al.

Table 2: Results of the repeated measure analyses of vari-
ance (rmANOVA) or non-parametric Friedman’sQ testswith
condition as within-subject factor (A, B, C, D).

Measure Model F / χ2 p η2p N

Arousal χ2(3) 12.476 .006∗∗ - 29
Valence χ2(3) 55.80 ≤ .001∗∗ - 29

Needs

Wow F(2.12, 61.51) 73.81 ≤ .001∗∗ .718 30
Aesthetic
pleasure F(2.24, 64.82) 82.49 ≤ .001∗∗ .740 30

Individual
Needs

Stimulation F(2.00, 58.12) 39.74 ≤ .001∗∗ .578 30
Luxury F(2.44, 70.83) 16.37 ≤ .001∗∗ .361 30
Competence F(2.45, 24.35) 1.906 .152 .361 30
Relatedness F(2.42, 70.39) 8.87 ≤ .001∗∗ .234 30
Autonomy F(2.20, 63.83) 17.40 ≤ .001∗∗ .375 30

NASA
Taskload

Effort F(2.09, 60.46) 59.69 ≤ .001∗∗ .673 30
Temporal
Demand F(2.07 , 60.14) 51.79 ≤ .001∗∗ .641 30

Frustration F(2.82, 81.68) 81.30 ≤ .001∗∗ .564 30
Fun F(2.11, 61.10) 29.81 ≤ .001∗∗ .507 30

important role in perceived effort. Regarding the perceived temporal
demand, there was a main effect for condition with A evoking
less temporal demand compared to B, C, and D. The frustration
scale revealed a significant main effect for condition with A and
B evoking equally low frustration. A and B differ significantly to
D and C. Regarding the experienced fun, participants rated the
conditions significantly different with higher ratings in B compared
to A, D, and C.

3.2 Objective measures
3.2.1 EEG results. The analysis reveals no difference between the
conditions for the EEG indices EI, WL, and FAA (Table 4).

3.2.2 ECG results. Our results reveal no differences regarding the
minimum and maximumHR. However, the mean HR differed signif-
icantly among the conditions with exceptionally high HR responses
in A, indicating low JoU and high U, compared to all other condi-
tions (Table 5).

3.2.3 EDA results. The EDA analysis reveals no differences in the
mean phasic response; but for the maximum phasic response was
significantly higher in A compared to D. Regarding the mean am-
plitude of the phasic response, a significant difference could be
observed. However, the post-hoc comparisons were not significant
after the FDR correction. The conditions did not differ in further
EDA measures.

Table 3: Results of the post-hoc comparisons between the
conditions for the subjective measures using t-test with a
Bonferroni multiple-comparison correction. Post-hoc com-
parisons were only calculated in case of a significant
rmANOVA or Friedman’s Q tests. For the Emoji Grid the
non-parametric Wilcoxon signed ranks test (Z) was chosen.

Measure Contrast test p N

Emoji

Arousal A – B Z .003∗∗ 29
B – D Z .002∗∗ 29

Valence A – C Z ≤ .001∗∗ 29
B – C Z .009∗∗ 29
C – D Z ≤ .001∗∗ 29
B – D Z .002∗∗ 29

Needs

Wow A – B t ≤ .001∗∗ 30
A – D t ≤ .001∗∗ 30
B – C t ≤ .001∗∗ 30
C – D t ≤ .001∗∗ 30

Aesthetic pleasure A – B t ≤ .001∗∗ 30
B – C t ≤ .001∗∗ 30
B – D t .002∗∗ 30

Individual Needs

Stimulation A – B t ≤ .001∗∗ 30
B – C t ≤ .001∗∗ 30
B – D t ≤ .001∗∗ 30

Luxury A – B t .018∗ 30
B – C t ≤ .001∗∗ 30

Relatedness A – B t .002∗∗ 30
B – C t ≤ .001∗∗ 30

Autonomy A – B t .003∗∗ 30
B – C t .001∗∗ 30
B – D t .004∗∗ 30

NASA Taskload

Effort B – C t ≤ .001∗∗ 30
B – D t .015∗ 30

Temporal demand A – B t ≤ .001∗∗ 30
A – C t ≤ .001∗∗ 30
A – D t ≤ .001∗∗ 30

Frustration A – C t ≤ .001∗∗ 30
A – D t ≤ .001∗∗ 30
B – C t ≤ .001∗∗ 30
B – D t ≤ .001∗∗ 30

Fun A – B t ≤ .001∗∗ 30
B – C t ≤ .001∗∗ 30
B – D t ≤ .001∗∗ 30

3.2.4 Facial emotion recognition results. In the facial emotion recog-
nition analysis, we did not observe differences between the condi-
tions for the emotions contempt, disgust, fear, sadness, and surprise
(Table 4). Surprisingly, there was a significant difference for anger
with higher activity values in A compared to C. In addition, we
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Table 4: Results of the non-parametric Friedman’s Q tests of
the objective measures with condition as factor (A, B, C, D).

Measure Model χ2 p N

EEG

EI 3 0.831 .842 26
WL 3 1.523 .678 26
FAA 3 0.323 .956 26

ECG

Mean HR 3 17.080 ≤ .001∗∗ 30
Minimum HR 3 2.440 .486 30
Maximum HR 3 6.520 .089 30

EDA

Mean Phasic Response 3 4.360 .225 30
Max Phasic Response 3 10.600 .014∗ 30
Mean Amplitude 3 8.00 .046∗ 30
Max Amplitude 3 6.880 .076 30
Mean Amplitude incl.
tonic component 3 5.320 .150 30

Max Amplitude incl.
tonic component 3 4.880 .181 30

Facial emotion recognition

Contempt 3 3.000 .392 25
Disgust 3 3.096 .377 25
Fear 3 1.56 .668 25
Sadness 3 3.528 .317 25
Surprise 3 0.840 .840 25
Anger 3 7.896 .048∗ 25
Joy 3 7.704 .053 25

Table 5: Results of the post-hoc comparisons between the
conditions for the objective measures using non-parametric
Wilcoxon signed ranks tests and a Bonferroni-Hochberg
FDR multiple-comparison correction.

Measure Contrast p N

ECG - Mean HR A - B .009∗∗ 30
A - C .009∗∗ 30
A - D .015∗ 30

EDA - Max Phasic Response A - D .030∗ 30

Facial emotion recognition Anger A - C .015∗ 25

found a slight non-significant trend for joy with higher activity in
the respective muscles in C but a large standard deviation signalling
to strong outliers.

4 DISCUSSION
4.1 Subjective measures
Our results of the subjective measures showed that participants
had greater positive experiences in interactions designed to elicit

JoU even under bad usability. These findings challenge the theory
that usability is rather a necessary than sufficient hygiene factor
for positive user experience [27, 30]. It seems that JoU compensates
usability problems in some cases. However, usability plays an im-
portant role for specific individual needs such as autonomy and
experienced effort to ensure control, execution of the intentions,
and predictability of interaction patterns. When perceiving usabil-
ity problems, participants were frustrated and experienced less fun
due to obstacles to the task achievement. Interestingly, JoU alone
could not compensate usability problems regarding the experienced
fun. We observed that especially the combination of JoU and good
usability elicits high arousal. But there was no difference to the
condition with low JoU and low usability, indicating that arousal is
less suited to distinguish between positive and negative emotional
events.

4.2 Objective measures
We did not find differences between conditions in the EEG indices.
This might be because the stimuli were not suitable to induce emo-
tional experience in these measures, especially for workload and
engagement since stimuli aimed to induce rather affective responses.
Moreover, our approach of using large timewindows of 4 sec epochs
after stimulus onset may have been not sensitive enough to capture
the direct neuronal activation pattern associated with experiencing
JoU and usability. More sophisticated analysis like time-frequency
and spatially resolved oscillatory EEG measures, such as event-
related spectral perturbation and functional connectivity analysis,
might reveal higher sensitivity and distinctiveness for detecting
affective experiences during the interaction with more naturalistic
stimuli [66, 76]. In the physiological measures, we observe that the
average HR as well as maximum and mean amplitude of the pha-
sic response in the EDA were elevated for the usability condition
without JoU. Higher HR activity and phasic response in the EDA
in the high usability condition could be related to motivational
components due to an easy task achievement compared to a more
relaxed, joyful, and less ambitious state in the other conditions [78].
Previous research has revealed that experiencing negative emotions
is associated with increased HR, whereas positive emotions dis-
play rather ambivalent HR responses [17, 39]. Still, more research
needs to be conducted to disentangle whether the increased HR
and phasic EDA response during good usability is explained by
motivational aspects or rather subtle negative emotions and stress-
ful experiences. Contrary to our hypotheses, we observed flipped
effects in the facial expression analysis with higher muscle activa-
tion associated with anger in the good usability condition without
JoU and higher activation associated with joy during bad usability
without JoU. We suspect the latter phenomenon to represent an
exaggerated response in form of a disdainful smile than a signal
of anger (e.g., a frown). In general, usage of facial expressions as
indicator for experienced emotions is under debate as high context
sensitivity and inter-individual variability make a valid and robust
classification more difficult [4, 29, 38]. Nevertheless, the availability
of camera sensors in mobile phones as well as future improvements
in classification algorithms give reason to further explore the po-
tential of the measurement method including other classification
algorithms. For instance, a recent validation study comparing the
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AFFDEX with the FACET algorithm revealed higher accuracy of
emotion recognition for the latter; in particular when classifying
anger and surprise [69]. Concluding, our results of the objective
measures suggest that experiencing usability without JoU seem to
elicit rather high physiological responses, arousal, and tension than
mere joy and relaxation.

4.3 Outlook and Limitations
Future studies should continue to investigate the specific relation
and interdependence between usability and JoU. The interaction
is still not clear and requires replicational studies - ideally with
a mulitmodal study design. Regarding the design of future tech-
nology, we implicate to concentrate more on the hedonic aspects
rather than only on usability. However, it is still to be defined what
aspects of JoU are the most important ones (the fulfilment of needs,
the Wow aspects or the aesthetic pleasure). Limitations of the study
comprise the less-standardized stimulus material and missing infor-
mation about personality traits (e.g., emotional processing). We are
planning to behaviorally validate the stimulus material regarding
the effectiveness of the manipulation (i.e., high vs. low usability
and JoU) by using videos of the interactions with the scenarios
and an independent sample. We suggest an approach using time-
point-to-time-point continuous ratings during the presentation of
the videos that separately investigate usability and the JoU com-
ponents. Further, a rather homogeneous sample participated in
the here presented study. Participants were predominantly young,
German, students, and well educated. Future studies should include
more diverse groups (older age, non-students, and other cultures).

5 CONCLUSION
Our multimodal methods approach provides a holistic picture on
user experience in a highly ecologically valid setting. It allows to
detect subtle differences and, thus, grasp the relationship and in-
terdependence between JoU and usability. Our findings contribute
to the ongoing debate about the importance of hedonic aspects
to overall user experience. Additionally, we laid the groundwork
for systematically and effectively capturing (neuro-)physiological
and behavioural indices related to the different elements determin-
ing user experience, most importantly joy and positive emotions.
This groundwork can not only be used in a highly standardized
lab setting but is viable for being implemented with naturalistic
interactions with real consumer devices. The study contributes to
the evaluation and improvement of future technology, placing users
at the centre of designing human-machine interactions.
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