
 

 

 

  

Abstract—Stress and cognitive overload during driving are 

associated with decreased performance potentially leading to 

serious mistakes and even fatal incidents. Therefore, research 

on drivers’ mental states recognition is promising to reduce 

these traffic accidents caused by human error (e.g., in 

combination with driver assistance systems and automated 

driving functions). Easy-to-use, unobtrusive wearables allow 

convenient measurement of electrodermal activity (EDA) which 

is an informative measure for the experienced stress level. In 

this article, we explore the potential of various conventional 

machine learning (ML) models with hand-crafted features, 

automated pipeline optimization (AutoML), and deep learning 

(DL) to recognize drivers’ stress states from EDA recordings in 

a driving simulator. Three different stress states (low, mid, and 

high stress) were induced via (a) the complexity level of the 

driving task (manual and automated driving) and (b) 

simultaneous secondary cognitive tasks. Our results reveal that 

a k-nearest neighbors (KNN) classifier with handcrafted 

features of the phasic and tonic EDA response as well as a 

pipeline suggested by AutoML via Tree-Based Pipeline 

Optimization (TPOT) are particularly suited with a high 

classification performance above an empirical chance level 

estimated via a dummy classifier. Predicting the three stress 

levels, they achieved a bootstrapped balanced accuracy of 63.7 

% (KNN; 95 % confidence interval (CI): [36.7, 86.7]) and 71.6 

% (stacking classifier of the AutoML; 95 % CI: [50.0, 90.0]), 

respectively. Interestingly, the DL model architecture was not 

superior in performance compared to the conventional and 

AutoML models with handcrafted features. Our results 

propose that AutoML might be beneficial to find optimal ML 

pipelines for EDA-based state recognition. In the future, we 

aim to evaluate the here proposed models regarding their 

generalization ability by applying them (a) on new datasets 

collected during realistic driving scenarios and (b) within a 

subject-independent approach (i.e., training one model for all 

subjects).    
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I. INTRODUCTION 

Distracted driving and reduced attentional resources due 
to stressful events or cognitive overload are a major concern 
for traffic safety causing numerous traffic accidents annually 
[1]. A driver's ability to process all relevant signs and 
perform the driving task adequately, that is, without errors, is 
dependent on the ratio of available and required (cognitive) 
processing resources [2]. Available cognitive resources are 
claimed by (a) the driving task itself, and (b) further 
simultaneous secondary tasks (e.g., answering a call, entering 
the destination in a route planner, or being engaged in a 
conversation). The complexity of the driving task varies 
depending on road and traffic conditions as well as the 
related amount of information which needs to be 
continuously integrated and updated [3]. The secondary task 
represents a distraction from the primary driving task and 
reduces driving performance [4-5]. By monitoring the 
driver’s mental states, safety-critical distractions, stress, or 
cognitive overload can be identified, and potentially life-
threatening situations and errors prevented; for instance, via 
an assistive driving system [6]. Various sensor recordings can 
be used to monitor drivers’ mental states: behavioral data 
(e.g., speed and acceleration of the vehicle) [7], facial and 
body expressions [8], eye gaze [9-10], neurophysiological 
signals (e.g., electroencephalography, EEG [12], and 
functional near-infrared spectroscopy, fNIRS, [13]), or 
(combined) physiological signals (e.g., respiration, skin 
temperature, electrocardiography, ECG, and electrodermal 
activity, EDA) [14-21]. Especially, easy-to-use and 
unobtrusive sensor wearables (e.g., smart watches or wrist 
bands) measuring physiological signals such as EDA reveal 
great potential for the real-life application of driver state 
recognition [20-21]. Arousing or stressful events can be 
measured from the physiological signals as correlates of 
decreased parasympathetic and increased sympathetic 
activity in the autonomous nervous system.  

Two main machine learning (ML) techniques for mental 
states recognition can be distinguished: (1) conventional ML 
with hand-crafted feature extraction and (2) deep learning 
(DL) with automated feature extraction. Conventional ML 
requires domain knowledge to extract informative features in 
the time, frequency, and time-frequency domain from the 
physiological signals. Several methods are available to 
perform a supervised classification on those extracted 
features including support vector machines (SVM), k-nearest 
neighbors (KNN), logistic regression (LR), or ensemble 
learners such as random forest classifiers (RFC) or gradient 
boosting classifiers (GBC) (e.g., [7]). In contrast, DL models 
such as convolutional (CNN) or recurrent neuronal networks 
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(RNN) circumvent the necessity of domain knowledge and 
manual feature engineering by automatically extracting 
meaningful and complex features from the recorded signals 
during the training phase. Recent literature suggested DL 
architectures (CNN, RNN, or combined CNN+RNN) to be 
particularly suitable for EDA-based state recognition [22-24]. 
In addition to the process of elaborated feature engineering, 
choices regarding the ML pipeline including model selection 
and hyperparameter optimization have a major impact on the 
classification performance. Recently, along with the 
exponential increase in computing power, various algorithms 
for automated pipeline optimizations were developed [25].  

However, to our knowledge, such AutoML approaches 
have received rather little attention so far in the research field 
of drivers’ stress recognition. In addition, model comparisons 
are mostly reported without providing confidence intervals of 
the classifiers’ performance as well as empirical chance 
levels (e.g., by using a dummy classifier) as baseline 
reducing the robustness and validity of the comparisons. 
Hence, we systematically compared (1) conventional ML 
models with handcrafted features, that are LR, linear 
discriminant analysis (LDA), SVM, KNN, RFC, GBC, (2) 
AutoML with handcrafted features using the Tree-Based 
Pipeline Optimization (TPOT) toolbox (v.0.11.7) [26-27] to 
identify the optimal ML pipeline for the classification (model 
selection and combination as well as hyperparameter 
settings), and (3) DL using a CNN-based DeepResNet with 
residual blocks similar to [22-23, 28]. We aimed to identify a 
suitable ML approach to robustly recognize drivers’ stress 
states from EDA recordings within close-to-realistic driving 
scenarios. Especially in complex driving scenarios, it is 
important to recognize stress and cognitive overload at an 
early stage in order to have enough time for immediate 
countermeasures. Therefore, we were interested whether it is 
possible to robustly detect stress from rather short time 
windows of 10 s.  

II. MATERIAL AND METHODS 

A. Participants 

Nine healthy volunteers (two male, age: M = 35.33 ± SD 
= 13.70 years) participated in the study. One participant had 
to be excluded due to an insufficient number of samples in 
one class (< 7 samples) remaining with eight participants for 
the ML analysis (two male, age: M = 36.13 ± SD = 14.14 
years). Table 1 summarizes the number of class samples per 
participant. Variation in the number of samples and length of 
the conditions among participants can be explained due to the 
different driving speed during manual driving. In addition to 
the electrodermal activity, we recorded electrocardiographic 
activity (ECG) during a close-to-realistic driving scenario. 
However, we here focus solely on the EDA recordings and 
exclude the latter in this work. The study was approved by 
the ethics committee of the Technical University of 
Darmstadt, Germany (ID EK33/2018). Participants signed a 
written informed consent according to the recommendations 
of the declaration of Helsinki before the experiment and 
received monetary compensation.  

B. Experimental Procedure 

A driving simulator at the Fraunhofer IAO was chosen as 

experimental environment with a vehicle mock-up of a 

Porsche Macan and the SILAB driving simulator software 

(v. 5.0; Figure 1). Participants had to drive on a two-lane 

highway alternating between manual and automated driving 

phases as well as transitioning between these conditions. 

During some driving phases, participants were asked to 

perform secondary tasks comprising either (1) a visual-

cognitive in-tray task on a tablet or (2) an auditory n-task 

(i.e., a 1-back task). The in-tray task required reading and 

remembering emails and reflects rather low (during 

automated driving) to medium (during manual driving) 

stress induction, whereas the auditory 1-back task reflects 

rather high stress induction independent of the driving style 

(i.e., manual or automated). For the driving task, difficult 

weather conditions (i.e., heavy raining) were chosen as 

medium stress induction. In total, each of the three stress 

levels (low, medium, high) were induced twice. Figure 2 

provides an overview of the driving phases in the 

experiment. EDA was recorded using the wearable 

Shimmer3 GSR Unit and iMotions software with a sampling 

rate at 128 Hz.  We mounted electrodes on the fingertips of 

the left index finger and middle finger as suggested by the 

Shimmer manual. The left hand was placed on the armrest of 

the door to reduce movement artifacts. 

 

 

Figure 1.  Immersive driving simulator as experimental environment at 

the Fraunhofer IAO. 

 

Figure 2.  Overview of the driving phases with alternating driving 

complexities (primary task) and simultaneous secondary tasks. 

III. MACHINE LEARNING FOR DRIVER STATE DETECTION 

All analyses are performed via custom written or adapted 

scripts in pythonTM (3.7). The neurokit2 toolbox was used 

for EDA processing [29]. 

A. Preprocessing and Feature Extraction 

The EDA signal was low-pass filtered using a 5th order 
Butterworth infinite impulse response (IIR) filter with a cut-
off frequency at 1 Hz followed by a moving average 
smoothing using a linear convolution with a filter kernel size 
of 0.75 * sampling rate and a boxzen window [30]. Next, the 
signal of each driving phase was cut into non-overlapping 
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epochs of 10 s. The 10 s epochs were z-score baseline 
corrected using the mean and standard deviation of a time 
window of 500 ms before each epoch. The epoched EDA 
signal was decomposed in phasic and tonic components via 
the cvxEDA algorithm using a convex optimization [31]. For 
the DL approach, the phasic and tonic signals are fed in the 
CNN-based DeepResNet without further feature extractions 
as in [23]. In the conventional and AutoML approach, we 
extracted statistical features (min, max, mean, sd, kurtosis, 
skewness) from the tonic and phasic components as well as 
additional peak-related features from the phasic response 
(sum of peaks of skin conductance response (SCR), mean 
amplitude of SCR, sum of SCR recovery, average time of SCR 
recovery) [32]. Bootstrapped distribution with overall mean 
of the three stress conditions for each feature are provided in 
Figure 3.  

 

Figure 3.  Comparison of bootstrapped means with 5000 repetitions for 

the stress level conditions (low, mid, high) per feature. Features were 

extracted from the baseline-corrected epoched tonic and phasic responses. 

Notches in the boxes of the plot visualize the upper and lower boundary of 

the mean’s 95 % CI. The blue line representing the overall mean. The box 

comprises 50% of the distribution from the 25th to the 75th quartile. The 

ends of the whiskers represent the 5th and 95th quantile of the distribution. 

The labels for each epoch were assigned according to the 
respective experimental stress phase (low, mid, high stress; 
see Figure 2).  

TABLE I.  SAMPLES PER STRESS LEVEL AND PARTICIPANT 

Partici

pant 

Samples per Stress Level 

Low Stress Medium Stress High Stress 

1 30 12 30 

2 24 36 24 

3 12 30 30 

4 18 12 24 

5 30 12 30 

6 24 18 24 

7 24 18 24 

8 30 24 24 

9 12 6 30 

M (sd) 22.67 (6.80) 18.67 (9.14) 26.67 (2.98) 

Note. M: mean, sd: standard deviation. Participant 9 is excluded in the following 

analysis due to an insufficient number of samples in the medium stress class.  

C.  Conventional Machine Learning 

We explored the following conventional ML classifiers: 
LR, LDA, SVM, KNN, RFC, and GBC as implemented in 
scikit-learn (v.0.22.2) [30]. Stress recognition was performed 
on participant-level and the data of each participant was 
divided into a training and a test set with a stratified 80:20 
split. Extracted features were scaled via the StandardScaler 
and reduced by applying a principal component analysis 
(PCA). Only components that explain 95% of the variance in 
their sum when ranked decreasingly in their contribution 
were selected as features (M = 6.54 ± SD = 0.62 
components). Hyperparameters of the classifiers were 
optimized per iteration and participant using the training data 
in a 5-fold cross-validated random grid search and evaluated 
with the performance measure accuracy balanced for the 
number of samples per class. A 5-fold cross-validation with 
balanced accuracy as performance metric was chosen to 
evaluate the prediction on the training and test set.  

D.  Auto Machine Learning  

We used TPOT with 100 generations, a population size of 
500 and 5-fold cross-validation to find an optimal ML 
pipeline via AutoML [26,27]. Data from all participants were 
used to find an optimal pipeline. We here present the 
pipelines suggested for the 2nd and 100th generation. The 
former was included due to strong overfitting in the 100th 
generation. The suggested pipeline of the 100th generation 
includes a feature map approximation via radial basis 
function kernel (gamma=0.601) and a stacking estimator 
comprising a Bernoulli Naïve Bayes classifier (alpha=0.1, 
fit_prior=True) and GBC (learning_rate = 0.5, max_depth = 
2, max_features = 0.5, min_samples_leaf = 7, 
min_samples_split = 17, n_estimators = 100, subsample = 
0.901). The pipeline of the 2nd generation proposes a feature 
selector removing all low-variance features (threshold=0.2) 
and stacking estimator comprising a GBC (learning_rate = 
0.5, max_depth = 7, max_features = 0.1, min_samples_leaf = 
7, min_samples_split = 5, n_estimators = 100, subsample = 0. 
851) and RFC (bootstrap = True, criterion = entropy, 
max_features = 0.3, min_samples_leaf = 2, 
min_samples_split = 3, n_estimators = 100). We evaluated 
the pipeline using a stratified 80:20 train-test split and 5-fold 
cross-validation with balanced accuracy as performance 
metric for the model evaluation as in the conventional ML 
approach. 
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E. Deep Learning – Convolutional Neural Network 

For the DL approach, we used a 1D CNN-based 
DeepResNet architecture that applies kernels along the 
temporal dimension of the EDA data similar to [23, 28]. The 
first part of the model extracts features automatically during 
training even from short time series (e.g., 10 s epochs). As 
input, we used the phasic and tonic signals per epoch [23]. 
The CNN-based DeepResNet was implemented via keras 
(v.2.2.4) with tensorflow backend. The architecture consists 
of a convolutional layer (Conv) with kernel size 7 and 1270 
samples followed by a feed-forward skip connection with one 
Conv layer (kernel size 1) and three residual blocks with two 
Conv layers (kernel size 3 and 1) and a subsampling by the 
factor of 2 per block (see Figure 4). The output of the last 
residual block is fed into a Conv layer (kernel size 1) 
followed by a fully connected layer with softmax activation 
function. We used the sparse categorical cross entropy as loss 
function and the Adam optimizer with an initial learning rate 
of 0.01. Each Conv layer is followed by a batch 
normalization and rectified linear activation unit (ReLu). 
Within the main branches of the skip connection and residual 
blocks as well as after the final convolutional layer, a dropout 
with a ratio of 0.8 addresses overfitting. Within the side 
branches of the skip connection and residual blocks as well as 
before the fully connected layer, a MaxPooling layer reduces 
the dimension of the feature space. Weight initialization was 
optimized for ReLu nonlinearities as suggested by [34]. 
Epoch size was set to 100 for training the model. 

 

Figure 4.  DeepResNet architecture for EDA-based three class stress 

recognition.  

F. Results 

For the comparison of the model performance and to account 

for imbalanced classes, we used an empirical chance level 

estimated by a dummy classifier with the method stratified 

as reference implemented via scikit-learn. To gain a 

distribution of the classifiers’ average performance, we used 

a Monte Carlo Simulation by retraining the ML pipeline 100 

times using the iteration number as random seed for train 

test split and model initiation. No overlap between the CIs of 

these distributions with those of the dummy classifier 

indicates a strong statistical significance and a partial 

overlap without including the mean a moderate statistical 

significance of p < .05 [35]. Figure 5 and Table 2 provide the 

mean balanced accuracy averaged over the 100 Monte Carlo 

iterations and participants per classifier and the 95 % CI of 

the complete distribution. The empirical chance level was 

estimated at M = 0.353% ([0.125, 0.6]). Results reveal similar 

classification performance for the conventional classifiers, 

AutoML, and DeepResNet. For the SVM, KNN, RFC, GBC 

as well as AutoML models of the 2nd and 100th generation, a 

strong overfit is observable as reflected in a much lower 

classification performance for the test set compared to the 

training. The SVM, KNN, and RFC as well as the two 

AutoML models could predict the stress level significantly 

better than the empirical chance model (i.e., the dummy 

classifier) when averaged over participants.  

 

 

 

Figure 5.  Distribution of balanced accuracy of the train (left box, light 

blue) and test set (right box, dark blue) from 100 Monte Carlo iterations per 

1342

Authorized licensed use limited to: FhI fur Arbeitswirtschaft und Organisation. Downloaded on September 15,2022 at 17:42:52 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

participant and model. Whiskers represent the 5th and 95th CI of the 

distribution. Solid line within the boxes: mean.  Dashed line within the 

boxes: median. Outer dashed line: theoretical chance level at 0.33. Outer 

right box: dummy classifier as empirical chance level (green). 

TABLE II.  STATISTICAL COMPARISON OF THE MODELS. 

Classifier 

Classification Performance with Balanced 

Accuracy 

Training Test 
Lower 

CI 
Mean 

Upper 

CI 

Lower 

CI 
Mean 

Upper 

CI 

LR 0.522 0.776 1.0 0.317 0.623 0.9 

LDA 0.433 0.633 0.867 0.267 0.577 0.867 

SVM 0.833 0.947 1.0 0.367 0.641 0.9 

KNN 0.833 0.948 1.0 0.367 0.652 0.933 

RFC 0.787 0.934 1.0 0.367 0.637 0.867 

GBC 0.817 0.944 1.0 0.333 0.627 0.867 

AutoML 02 0.871 0.962 1.0 0.5 0.716 0.9 

AutoML 100 0.87 0.955 1.0 0.467 0.591 0.85 

DeepResNet 0.307 0.648 1.0 0.25 0.625 1.0 

Dummy    0.125 0.353 0.6 

Note. No overlap between the CIs with those of the dummy classifier indicate significantly better 

results (highlighted in yellow).  

 

We compared the results per participant for the best 

conventional ML model, that is the KNN, and best AutoML 

model, that is the model of the 2nd generation. For the KNN, 

classification performance was above chance in half of the 

participants. For the AutoML 2nd generation model, 

classification performance was above chance in all 

participants (see Table 3). 

TABLE III.  STATISTICAL MODEL COMPARISON PER PARTICIPANT. 

Participants 

Classification Performance with Balanced Accuracy 

Training Test 
Lower 

CI 
Mean 

Upper 

CI 

Lower 

CI 
Mean 

Upper 

CI 

 KNN 

1 0.803 0.899 0.984 0.348 0.608 0.817 

2 0.933 0.985 1.0 0.449 0.663 0.884 

3 0.833 0.930 1.0 0.333 0.610 0.817 

4 0.767 0.907 1.0 0.332 0.626 0.9 

5 0.879 0.945 1.0 0.558 0.782 0.942 

6 0.872 0.954 1.0 0.316 0.569 0.8 

7 0.917 0.977 1.0 0.465 0.708 0.933 

8 0.927 0.985 1.0 0.367 0.648 0.884 

 AutoML Generation 02 

1 0.848 0.930 0.980 0.5 0.592 0.85 

2 0.939 0.989 1.0 0.5 0.618 0.872 

3 0.855 0.940 1.0 0.5 0.591 0.851 

4 0.844 0.922 0.982 0.416 0.552 0.85 

5 0.874 0.939 0.979 0.5 0.594 0.85 

6 0.895 0.966 1.0 0.467 0.579 0.800 

7 0.904 0.968 1.0 0.467 0.592 0.85 

8 0.938 0.986 1.0 0.5 0.612 0.872 

 Dummy 

1 - - - 0.133 0.372 0.6 

2 - - - 0.118 0.343 0.588 

3 - - - 0.133 0.373 0.6 

4 - - - 0.091 0.365 0.636 

5 - - - 0.133 0.368 0.6 

6 - - - 0.071 0.335 0.571 

7 - - - 0.071 0.335 0.571 

8 - - - 0.125 0.335 0.563 

Note. No overlap between the CIs with those of the dummy classifier: p < .01; Partial overlap without 

including the means: p < .05 [30]. Significant results are highlighted yellow.  

IV. DISCUSSION 

We evaluated several conventional ML models, AutoML, 
and DL for EDA-based drivers’ stress recognition. Therefore, 
we designed a close-to-realistic driving scenario allowing to 
induce three different stress levels via the driving task itself 
(i.e., automated and manual) and simultaneous secondary 
tasks. Our results reveal that the here chosen DL architecture 
is not superior to the conventional hand-crafted and 
automated ML for the EDA-based recognition of the three 
different stress levels. This might be explained due to the 
chosen model parameters (e.g., numbers of residual blocks, 
kernel size, or learning rate) or the rather small data set. 
When comparing conventional ML models with the manually 
composed pipeline, the KNN and SVM seem to be 
particularly well suited for EDA-based stress detection with 
above chance-level classification performance, which is in 
line with [24, 36]. However, we could achieve even higher 
accuracy when using an optimized pipeline via the AutoML 
TPOT. Since the model of the 100th generation strongly 
overfitted, which is reflected in the high deviance between 
the performance of the training and test set, we also explored 
a second pipeline suggested in one of the earlier generations 
(here the 2nd generation). The better performance of the 2nd 
compared to the 100th generation pipeline can be explained 
by the fact that the pipeline was optimized using the whole 
dataset with all participants (with the highest performance in 
the 100th generation) but later evaluated separately for each 
participant (with higher performance in the 2nd generation). 
The proposed 2nd generation pipeline was a stacked estimator 
comprising a GBC and RFC. It showed the highest balanced 
accuracy with 71.6 %, (CI 95%: lower boundary of 50, upper 
boundary of 90), for the three-class driver stress recognition. 
Compared to the conventional ML approach, the AutoML 
combined multiple classifiers into a stacking estimator. 
Stacking allows to combine benefits of several estimators by 
using the output of each individual estimator as input of a 
final one. This approach might have contributed to the higher 
classification performance of the AutoML models and should 
be considered when manually developing ML pipelines. We 
observed a strong variance not only among the ML classifiers 
but also in comparison to the dummy classifier which 
emphasizes the importance of repeated evaluation of model 
performance to access accuracy differences.  Future research 
could investigate the potential of AutoML including DL 
architectures, since these approaches would not only optimize 
the ML pipeline, hyperparameter selection (which we here 
have neglected within the DL approach) but also feature 
extraction [25]. Major challenges of the EDA-based drivers’ 
stress recognition in general and in particular when using 
AutoML to optimize ML pipelines are the small data sets and 
related low generalization. Longitudinal study designs with 
multiple measurement times per subject could help to provide 
a larger number of samples per subject but bear a new 
challenge regarding generalization due to variability across 
sessions. When applying mental state recognition in realistic 
environments, time complexity of the ML models will be a 
further critical factor which needs to be considered. Although 
time insensitive and computationally costly methods might 
be acceptable during pipeline optimization, time-effective 
methods are necessary for the later real-time state detection in 
naturalistic driving applications.  
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V. CONCLUSION 

A robust classification performance and easy-to-use, 
unobtrusive sensors pave the way for the stress recognition in 
naturalistic driving scenarios. Our results identify optimal 
ML features and algorithms for EDA-based classification of 
stress levels. In a next step, we aim to evaluate the suitability 
and performance of the suggested pipeline for drivers’ stress 
recognition using new data sets (potentially involving a real 
driving task). Furthermore, we plan to combine various 
physiological sensor signals (e.g., ECG and EDA) within one 
classification model for multi-modal driver state recognition. 
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