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Abstract. We investigated the effects of feedback on users’ performance during a
cognitive task with concurrent emotional distraction. Our aim was to provide par-
ticipants with insights into their current affective and cognitive state by measuring
and decoding brain activity. Therefore, a real-time preprocessing, analyzing, and
visualization routinewas developed based on electroencephalographic (EEG) data
measured during a primary study. To explore users’ behavioral and neurophysio-
logical reactions, error-tolerance as well as possibilities to improve feedback accu-
racy by themeans of feedback-based event-related potentials (ERPs), we provided
either legit or inappropriate sham feedback in a second study. The kind of feedback
(legit or inappropriate) had only marginal influence on participants’ subsequent
performance. On a neuronal level, we did not observe differences in the ERPs
evoked by the legit and inappropriate feedback. In qualitative interviews, partici-
pants evaluated the feedback as interesting but also sometimes irritating due to odd
feedback trials. Our study emphasizes the importance of performance accuracy
and transparency towards users regarding the underlying feedback computations.

Keywords: Brain-computer interfaces · Electroencephalography (EEG) ·
Feedback · Adaptive systems · State monitoring · Affect ·Working memory load

1 Introduction

Identifying users’ mental states is a decisive task for many human-machine applications
like in industrial production, semi-autonomous vehicles, medical surgery, or in the con-
text of learning. Providing users with insights on their current affective and cognitive
state bymeasuring and decoding brain activity allows to foster self-regulation and stress-
management [1]. It might even enhance cognitive performance via neurofeedback [2].
Especially affective states are known to be significant predictors of work performance
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[3] and satisfaction [4]. Whereby, workload is related to occupational exhaustion, stress,
and fatigue [5]. Research simultaneously investigating interdependencies of the two con-
structs [6] and their decoding for adaptive application is, unfortunately, scarce [7]. For
the application of (neuro-)adaptive systems, the feedback about the recognized states, its
perceived appropriateness, and reliability of the system are essential factors. How users
perceive and evaluate closed-loop human-machine systems, is significantly mediated by
trust: Previous research revealed that trust in an agent or system is strongly influenced
by its reliability in task performance and negatively correlated with perceived errors of
the automated system [8, 9]. Consequently, users’ acceptance and trust regarding a sys-
tem is interrelated with the perceived accuracy of the system’s feedback and subjective
error tolerance of the user. In their research on performance monitoring feedback loops,
Alder and Ambrose [10] highlighted the influence of perceived feedback accuracy and
fairness as well as perceived control over the feedback (e.g., its frequency) on attitudinal
reactions like satisfaction and commitment as well as behavioral outcomes. Hence, the
perceived feedback appropriateness and accuracy are suggested to be critical, since these
factors seem to affect the feedback’s impact on users’ performance, their attitude towards
the system, and the perceived usefulness of the system application. To investigate how
precise respective applications should be, one has to explore the error tolerance of users
with respect to feedback on their current affective and cognitive states. With electroen-
cephalographic (EEG) recordings, event-related potential (ERP) responses evoked by the
feedback can be used for an automatic error correction to improve subsequent feedback
cycles [11, 12]. The ERP responses differ depending on whether a feedback is appropri-
ate or not. The feedback-related negativity (FRN), a negative deflection around 250 ms
after feedback-onset (comparable with the error-related negativity), and the P300, an
indicator for mismatch between internal and external representations, are sensitive to
erroneous feedback [13].

Here, we investigate whether we can continuously monitor users’ current states and
provide an intuitive feedback of recognized states. Therefore, a real-time preprocessing,
analyzing, and visualization routine was developed based on an experimental dataset of a
preliminary study. In the second feedback study, onwhichwemainly focus here, wewere
interested in two aspects: 1) the effectiveness and evaluation of non-reliable feedback
by investigating users’ reactions to a sham feedback that was either legit (consistent
with the task condition) or inappropriate (inconsistent with the task condition) [cf. 14,
15] and 2) the detection of neuronal correlates associated with erroneous feedback to
improve the accuracy. Both studies were realized via a wireless, easy-to-use EEG with
dry electrodes [cf. 16].

2 Preliminary Study

2.1 Participants Declaration

Eight participants (three female) took part in the preliminary study (mean age 23 years,
SD = 1.12) and seven participants (four female) in the second feedback study (mean
age 25.48 years, SD= 2.66). All participants had normal or corrected-to-normal vision,
no psychiatric history, and were free of neurological diseases. They signed an informed
consent according to the recommendations of the declaration of Helsinki. The study was
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approved by the ethics committee of theMedical Faculty of the University of Tuebingen,
Germany (ID: 827/2020BO1).

2.2 Experimental Procedure

The real-time preprocessing, analyzing, and visualization routine of the feedback was
developed based on the dataset acquired in the preliminary study where participants
performed elementary and complex arithmetic tasks with concurrent auditory emotional
distractions (negatively, neutrally, and positively associated sounds). After each math-
ematical task, we asked them to rate their subjectively perceived affect and effort. We
investigated neurophysiological correlates and behavioral outcomes in a 2 (low working
memory load vs. high working memory load) × 3 (low valence, neutral valence, and
high valence) design resulting in six experimental conditions. The experimental frame-
work was similar for the following feedback study. The experimental setup can be seen
in Fig. 1A.

Fig. 1. A) Experimental setup. B) Visualization of the recognized affective and cognitive state
based on the frontal alpha asymmetry score (left) and workload index (right).

2.3 Data Acquisition, Preprocessing and Analysis

EEG data was recorded according to the international 10–20 system using a wireless,
easy-to-use EEG headset well-suited for the application in naturalistic settings with 20
electrodes and dry sensor technology. The EEG was grounded to the left mastoid, which
was also used as common reference. The impedance was kept below 2,500 k� at the
onset of the experiment. Data was acquired at a sampling rate of 500 Hz and saved
via LabStreaming Layer. Data analysis was performed with custom written scripts in
python™. For the online analysis, the signal was re-referenced to the Cz-electrode, de-
trended, and filtered with a second order zero-phase lag infinite impulse response (IIR)
filter using a narrow frequency band of 0.5 to 14 Hz. During the task, the affective and
cognitive states of the preceding 2 s were estimated every 0.5 s using power spectral
measures computed via a modified version of the Fast Fourier Transformation (FFT),
the so-called Welch’s method. For the estimation of affect, the frontal alpha asymmetry
coefficient was calculated [17], whileworkingmemory load estimateswere derived from
frontal theta and parietal alpha power [18]. A 3-min resting state measurement served as
baseline for the subsequent estimation of the online scores. Substantial changes in these
scores that exceeded one standard deviation of the baseline scores were concurrently
translated to visual feedback. The feedback was presented on a gauge dial (see Fig. 1B).
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3 Feedback Study

In the second study, we investigate neuronal and behavioral effects (i.e., response time
and accuracy) of either appropriate or erroneous sham visual feedback [cf. 14, 15]. We
further explore how participants accept and experience the real-time feedback. As ERP
responses evoked by feedback allow to continuously improve the system’s accuracy, we
were interested whether we can identify neuronal correlates distinguishing appropriate
and erroneous feedback [11, 12]. After each trial, we showed participants a sham feed-
back allegedly based on their brain activity during the task and asked them to potentially
correct the score according to their own perception by clicking in the respective field.
In 80% of the trials, the feedbacked score corresponded to the working memory load or
emotional valence condition; in 20%, we presented an odd feedback, e.g., high cognitive
load score during a rather simple task. After the experiment, we asked participants in a
semi-structured qualitative interview how they perceived the feedback and whether they
used it to adapt their behavior.

To analyze the neurophysiological data offline, EEG signals were de-trended, band-
pass filtered between 0.5 to 23 Hz using a zero-phase lag finite impulse response (FIR)
filter and cut into epochs starting 200 ms before to 1 s after feedback onset. We rejected
epochs containing a maximum deviation above 250 µV in any frontal EEG channels
(Fp1, Fp2). Afterwards, an independent component analysis (ICA) using the extended
infomax ICA algorithm [19] as implemented in the MNE-Python toolbox [20] was
used to remove cardiac-related and muscular artefacts as well as ocular movement by
careful visual inspection of the topography, time course, and power spectral intensity
[21]. The epochs were baseline corrected by subtracting the mean amplitude of the
time interval before feedback onset. For identifying differences in the ERPs between the
feedback conditions (odd vs. legit for affect andworkload), we used a cluster-based, non-
parametric randomization approach [22]. Clusters were identified as adjacent points in
space (EEGchannels) and time (samples in the epoch) using aT-value based cluster-level
threshold of p < .01 and group-level threshold of p < .05 (two-sided).

To investigate behavioral effects of the feedback, we performed one-way repeated
measures analyses of variance (rANOVAs) with feedback (legit vs. inappropriate) as
main effect and perceived correctness reflected in probability that users correct the feed-
backed score as well as response time and accuracy in the subsequent trial as dependent
variables. Additionally, we explored interaction effects on performance regarding the
kind of feedback (legit vs. inappropriate) and experimental condition.

4 Results

4.1 Effects on Perceived Correctness

Participants were significantly more likely to correct an odd feedback compared to a
reasonable one regarding the cognitive effort, F(1, 6) = 30.82, p < .001, partial η2 =
.84. Similarly, participants tended to be more likely to correct an odd feedback com-
pared to a reasonable one regarding the affective state, F(1, 6) = 5.14, p = .064, partial
η2 = .46.



84 S. Gado et al.

4.2 Effects on Performance

No significant effects were found of inappropriate, odd feedback on participants’ per-
formance in the subsequent trial. Interestingly, there was neither a difference between
trials with previous odd or appropriate feedback for affect nor workingmemory load (see
Fig. 2). Further, we observed no interactions between feedback and experimental condi-
tion for affect and effort. Increased working memory load did not change the perceived
correctness of and probability to adjust an inappropriate feedback score.

Fig. 2. Effects of odd feedback (left) and perceived correctness of the scores (right) on
performance (accuracy and response time) in the subsequent trial. Error bars= standard deviation.

4.3 Results of the ERP Analysis

The cluster-based, non-parametric randomization test revealed no significant spatio-
temporal cluster for the difference between the appropriated and odd feedback. Figure 3
depicts the grand average response over epochs and participants per condition and region
of interest (frontal, central, and parietal).

Fig. 3. Grand average over epochs and participants per condition. Dashed lines: odd feedback,
solid lines: legit feedback. Shaded area: standard deviation.

4.4 Insights Gained in the Interviews

Most participants evaluated the feedbacked scores positively and as interesting. How-
ever, some participants also characterized the feedback as irritating. The design and
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feedback format were perceived as suitable and engaging. Some participants recom-
mended to provide detailed explanation on the underlying computations, the used data
(components of the data), and recommendations for the score interpretation. About half
of the participants reported that they rather did not use the provided feedback scores
intentionally to change their behavior in the subsequent trial. One reported a higher
intrinsic motivation to increase focus and concentration. Two responded that they had
memorized the feedback-sound combination for particularly irritating sounds to suppress
themmore efficiently in upcoming trials.Most of the participants could not imagine using
the technology in realistic environments. Especially, because some of them perceived
the dry-electrode EEG device as uncomfortable over the course of time. Nevertheless,
they stated that monitoring of current or potentially only critical affective and cognitive
states might be interesting in safety-relevant applications, e.g., when maneuvering a car
or airplane. They reported further potentials of adaptive feedback systems to enhance
effectiveness in learning and training scenarios.

5 Discussion and Conclusion

Our real-time EEG-based feedback approach contributes to the development of closed-
loop human-machine systems allowing to recognize users’ state, provide feedback, and
adapt the system parameters to individual capabilities and demands. Our study revealed
two main challenges for adaptive feedback systems: 1) We observed no significant posi-
tive effect on participants’ performance for appropriate compared to erroneous feedback.
Since participants reported irritation in response to the inaccurate feedback and the wish
to get more information regarding the score computation, it is likely that they had limited
trust in the feedback system. Although, they evaluated the system in general positively,
their (involuntary) trust evaluation might have mediated the feedback’s impact. Prob-
ably only systems perceived as reliable and consistent, are able to induce effects on
a behavioral and neuronal level [23]. Therefore, participants in our study might have
ignored or suppressed the feedback without considering it as a significant cue to change
behavioral strategies. An alternative explanation why participants did not actively use
the feedback, might be that they did not perceive it as relevant for solving the arithmetic
task. In addition, we did not provide any explicit instruction to use the feedback during
the task. 2) On the neuronal level, we observed no difference in feedback-related poten-
tials between the conditions. This absence of distinct neuronal correlates associated with
erroneous feedback (FRN, P300) might be explained by either the inconsistent feedback
performance or the lower signal to noise ratio due to an insufficient number of trials or
the dry-electrode EEG device [16].

With this study, we investigated an approach to provide real-time insights into users’
cognitive and affective states during a cognitively demanding task and the neuronal
and behavioral effects of the given feedback. The described research contributed to the
development of closed-loop human-machine systems and understanding of associated
challenges in performance-oriented contexts.
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