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Abstract 

Peripheral physiological measures such as electrodermal activity (EDA), heart rate and pupil dilation, as well as 

neurophysiological measures such as electroencephalography (EEG), can inform us about individuals’ cognitive 

and emotional state. We are interested in exploiting such measures in real life situations. A challenge of 

interpreting physiological measures as markers of mental state in real life is the lack of context information. We 

here approach this challenge by relating physiological measures to eye tracking. Participants scanned stimuli that 

induced different levels of workload (small sets of numbers that needed to be added or not) and different types of 

emotion (neutral, pleasant and unpleasant pictures). EDA, heart rate, pupil size and EEG were related to the first 

eye fixation on the stimulus. For peripheral measures, response traces across the following 10s were determined 

and signal amplitudes were compared between the different types of stimuli. EEG signals were compared for the 

different types of stimuli in the time interval from fixation onset to 1500 ms later using a cluster-based, non-

parametric randomization approach. For the peripheral measures, high workload stimuli stood out from all other 

stimuli in all modalities, with patterns as expected from literature under more traditional experimental 

conditions: high values of EDA, heart rate, and pupil size for high compared to low workload stimuli. For 

emotional stimuli, peripheral physiological effects tended to be in the expected direction but were more modest 

in size. In the EEG signals, a significant late parieto-occipital cluster could be identified with higher amplitudes 

for high compared to low workload stimuli, as well as for emotional stimuli compared to the neutral stimuli. In 

future analyses we will combine fixation-locked signals from different modalities to detect mental states elicited 

by information that is being looked at. Our first results indicate that this may be especially helpful in situations 

related to cognitive workload, e.g. determining whether operators are not only looking at, but are also cognitively 

processing information that is presented on a screen. 

Introduction 

Physiological measures such as skin conductance or electrodermal activity (EDA), heart rate, pupil dilation and 

electroencephalography (EEG) reflect a range of physical and sensory processes. However, they also contain 

information about the cognitive and emotional state of individuals [1-3]. This has convincingly been shown in 

laboratory experiments where participants sit still and are presented by stimuli that are designed to elicit certain 

cognitive or emotional states. For instance, heart rate is higher and pupil size larger when performing a 

controlled task with a high memory load compared to performing a low load task [4], heart rate and skin 

conductance responses differ when pictures with different emotional content are shown [5], and a stronger P300 

(a late component in the event-related potential) can be observed for stimuli that draw attention compared to 

ones that do not [6]. To reliably extract, study and use this information in real life environments, it is important 

to relate recorded physiological data to context, i.e. to what occurs in the outside world. One way in which this 

can be done is to use information from eye movements, such as recorded via eye tracking. Recorded fixation 

locations indicate what is being observed when combined with camera images, or when the visual environment 

is known in another way (e.g. because certain parts of an information display have fixed locations, or when 

information is known since it is presented on a monitor). Previous work studied EEG signals related to fixation. 
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While this is challenging since eye movements strongly influence EEG, there is now a range of studies showing 

that higher order cognitive processing of stimulus information during reading and visual search are reflected in 

such fixation- or saccade related potentials (e.g. [7-9]). Little research has been dedicated to relating other 

physiological signals to fixations. An exception is [10], who not only related EEG to fixation onset, but also 

pupil dilation. They found that pupil dilation was higher after fixations on target objects relative to distractor 

objects, and that this information was helpful besides EEG to classify data as coming from fixations on targets 

versus distractors. Also, [11] examined both pupil dilation and EEG following fixations on targets and 

distractors, where participants were asked to remember the locations of the targets while performing an auditory 

math task. While EEG was especially informative to distinguish between fixations on target and distractor items, 

pupil size was informative as to whether the target location would be remembered correctly. Specifically, a large 

pupil size was associated with not remembering the target location, probably because of moments of high 

workload caused by the math task. We are not aware of work that related EDA and heart rate to fixation onset in 

paradigms where participants move the eyes around. 

As suggested, combining modalities can be helpful to better identify mental state and therewith predict 

performance. Multimodal measurement techniques can be helpful for different reasons. Firstly, a mental state 

(e.g. that goes with finding a target, as in [10]) may be better identified when utilizing multiple measures of 

interest that reflect a similar mental state but are affected by different types of noise. Hence, a combination could 

result in a more robust identification. Secondly, different modalities can reflect different types of mental state 

(e.g. event-related potentials in the EEG reflect target detection and pupil size reflects workload as in [11]), 

enabling more fine-grained mental state estimation. EDA and pupil size are robustly correlated to states of bodily 

arousal, whereas the P300 component in the EEG reflects states of attention. Peripheral physiological measures 

may be relatively suitable for emotional engagement (arousal), and EEG (reflecting cortical activity) more for 

cognitive processes [12-16]. Note that in many cases, these types of processes are expected to coincide: an 

emotional stimulus is likely to draw attention and a difficult cognitive task likely elicits arousal.  

In the current study, we recorded EDA, heart rate, pupil dilation and EEG and related these signals to fixation 

onset where stimuli are viewed that we expect to elicit different degrees of workload and emotion. Our ultimate 

aim is to identify affect and cognition in an environment where individuals freely look around so that humans 

and machines can interact more naturalistic and efficiently. As a first step in exploring and comparing different 

fixation-locked signals in response to different types of stimuli within the same participants and the same 

paradigm, we designed an experiment that induced quite predictable and limited amounts of large eye 

movements. This may be akin to situations of operators who subsequently view portions of a display with 

information that need to be taken in and induce different types of mental state.  

Methods 

Participants 

A total of 20 healthy participants (5 men, 15 women) took part in this study. They were between 19 and 34 years 

old, with an average of 23 years. Participants were recruited through the participant pool of the research institute 

where the study took place (TNO) and received a monetary reward to compensate for time and travel costs. None 

of the participants wore glasses. All participants signed an informed consent form in accordance with the 

Helsinki Declaration [17], before participating in the study. This study was approved by the Human Research 

Protections Official (HRPO) and the TNO Institutional Review Board (TCPE). Eye recording failed in two of the 

participants, leaving us with fixation-locked data from 18 participants. For the first four participants that we 

recorded, EDA and heart rate data were lost. In an additional four participants, heart rate data was lost. Four 

participants were excluded in the EEG analysis due to poor signal quality. In sum, pupil size was obtained for 18 

participants, EDA for 14 participants, heart rate for 10 participants, and EEG for 16 participants  

Materials 
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For measuring eye gaze location and presenting stimuli, we used a Tobii Pro TX300 eye tracking system (Tobii 

Technology, Stockholm, Sweden). This system consists of a noninvasive standalone eye tracking recording unit 

fixed underneath a stimulus screen. Gaze location of both eyes was recorded at 60 Hz. The screen was a 23-inch 

flat-screen monitor, set at a resolution of 1920 * 1080 pixels. The monitor was about 40 cm from the 

participants’ eyes. 

EDA and ECG (electrocardiogram, to obtain heart rate) were recorded using a Biosemi ActiveTwo MkII system, 

with a sampling frequency of 512 Hz. EDA was measured by placing gelled electrodes on the fingertips of the 

index finger and the middle finger of the left hand. ECG electrodes were placed on the right clavicle and on the 

lowest floating left rib. Additionally, we measured neurophysiological activity using EEG. The scalp EEG 

potentials were recorded using an actiCap 32-channel system according to the extended international 10-05 

system with a LiveAmp amplifier (Brain Products GmbH, Munich, Germany). The impedance of the electrodes 

was kept below 20 kΩ at the onset of each session. EEG data was digitized at 250 Hz, using the BrainVision 

Recorder Software (Brain Products GmbH, Munich, Germany). The unified collection of signals from the 

different recording systems and the stimulus presentation program were synchronized and stored for off-line data 

analysis using Lab Streaming Layer (LSL) [18]. 

Stimuli and design 

Participants were presented with pictures that were expected to induce different levels of workload and types of 

emotion. There were five types of these pictures: 1) inducing workload: displaying three three-digit numbers 

arranged around the letter ‘A’ indicating that these numbers needed to be added (NumbersAdd), 2) inducing no 

workload: displaying three three-digit numbers arranged around the letter ‘N’ indicating that these numbers did 

not need to be added (NumbersNone), 3) inducing pleasant emotion: a picture from the International Affective 

Picture System (IAPS) [19] with high valence and high arousal (HVHA), 4) inducing unpleasant emotion: a 

picture from the IAPS with low valence and high arousal (LVHA), 5) inducing no emotion: a picture from the 

IAPS with neutral valence and low arousal (Neutral). 

From the IAPS, the pictures were randomly drawn out of  collections of 60 pictures with valence scores higher 

than 5.5 and arousal higher than 5.5 (pleasant), valence scores lower than 4.5 and arousal higher than 5.5 

(unpleasant) and valence scores between 4.5 and 5.5 and arousal lower than 4.5 (no emotion or neutral).  

All pictures were approximately 205 by 154 pixels in size and could appear at any of 9 locations on the screen, 

with a minimum distance of 191 pixels between two sequentially presented pictures. A picture was presented for 

10 s. Nine seconds after picture onset, the next picture appeared. Workload inducing pictures could be followed 

by a screen prompting the participant for the result of the addition. This was intended to motivate participants to 

really perform the math during the workload inducing picture, and to allow them a short break. Blocks of stimuli 

separated by these questions consisted of 15 or 20 pictures, containing 3 or 5 pictures, respectively, of each type. 

Otherwise, the order of pictures was random. Participants finished up to 14 blocks (with a minimum of 12 

blocks, and a median of 14 blocks). 

Procedure 

Participants received a short explanation about the study and were invited to ask any question they may have. 

They then signed the informed consent form. The Tobii eyetracker was calibrated using a nine-point calibration. 

Participants were fitted with the ECG, EDA and EEG electrodes. Participants were asked to not speak during the 

experiment unless absolutely necessary and to keep movements to a minimum.  

Analysis 

All data analysis was performed with custom written or adapted scripts in MATLAB® and PythonTM . 
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For the EDA, the phasic and tonic components were extracted using Continuous Decomposition Analysis [19] as 

implemented in the Ledalab toolbox for MATLAB®. The phasic component was z-score standardized following 

[21]. These data are further used in the analysis. 

ECG measurements were processed to acquire the inter-beat interval (IBI, which is the inverse of heart rate). 

ECG was band-pass filtered between 5 and 15 Hz using a third order Butterworth filter. Peaks were detected 

following Pan and Tompkins [22]. The IBI semi-time series was transformed into a timeseries. This was done by 

interpolating consecutive IBIs and then resampling at 512 Hz. IBI was then transformed to heart rate and further 

used in the analysis. 

To handle missing values in the raw eye tracking data (pupil size and gaze location), typically occurring due to 

blinks, the data were linearly interpolated in time windows of maximum 75 ms of consecutive missing data 

points [23]. Data from the left and right eye were averaged [23-24]. Additionally, gaze position was smoothed 

using a median filter with a sliding window of 20 ms [24]. Gaze position over time was used to determine 

fixation onset, where we are interested in the first fixation on the picture. In order to do this robustly without 

having to rely on more or less arbitrary temporal and spatial thresholds, we followed a previously adopted 

approach [11,25] and determined the time of the maximum velocity of the saccade of interest as a proxy of 

fixation onset, though note that the actual fixation starts in the order of 30 ms later. For convenience, we still 

refer to our data as ‘fixation-locked’ rather than ‘saccade-locked’. Maximum saccade velocity was searched for 

in a 1.5 seconds window, starting at the onset of the new picture. Note that this method takes advantage of the 

design of our experiment by providing us knowledge of the approximate time of fixations of interest. It should be 

replaced by another method in situations with more unpredictable timing - e.g., in the case of a known display, 

fixations of interest are those associated with saccades that moved the gaze from outside into a certain spatial 

area of interest; or generic temporal and spatial thresholds should be used. 

For each picture, EDA epochs were extracted, starting at time of fixation and ending 10 seconds later. For each 

participant, these epoched signals were aligned by subtracting the average value of the first 500 ms from the 

epoched signal, and averaged across pictures of each of the five picture types (HVHA, LVHA, Neutral, 

NumbersAdd and NumbersNone). The same procedure was followed for heart rate and pupil size. Next, for each 

participant and picture type, the response amplitude was determined by taking the maximum value in the epoch 

for EDA and heart rate, and by taking the average value in the epoch for pupil size. These data are used in 

statistical analyses.  

To analyze the neurophysiological data, EEG signals were de-trended, zero-padded and re-referenced to 

mathematically linked mastoids [26].  We excluded two EEG channels (T8 and T7) from the analysis due to 

artefact contamination. Next, we band-pass filtered the EEG signals between 1 to 20 Hz to calculate fixation-

locked event-related potentials (FERP). The filtering was done by using a first order zero-phase lag finite 

impulse response (FIR) filter.  

For the analysis of FERPs, fixation-locked epochs ranging from 200 ms before and 1500 ms after the beginning 

of the fixation onset were created separately for the five picture types (HVHA, LVHA, Neutral, NumbersAdd 

and NumbersNone). We rejected epochs containing a a maximum deviation above 200 µV in any of the frontal 

EEG channels (AFp1, AFp2). Furthermore, for each remaining epoch we performed an independent component 

analysis (ICA) using the extended infomax ICA algorithm [27] as implemented in the MNE-Python toolbox [28]. 

The ICA was used to remove further cardiac-related artefacts, ocular movement and muscular artefacts. The 

selection of components indicating artefacts was done by careful visual inspection of the topography, times 

course and power spectral intensity of the components [29,30].  

To study spatio-temporal changes of neurophysiological signals we baseline-corrected the artefact-free EEG 

epochs by subtracting the mean amplitude of the time interval between -200 ms and 0 ms before the fixation 

onset. FERPs were then calculated by averaging the EEG signal separately for each picture type (HVHA, 

LVHA, Neutral, NumbersAdd, NumbersNone) and each channel. For the statistical evaluation we performed a 

mass-univariate analysis. We chose a cluster-based, non-parametric randomization approach which included 
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correction for multiple comparisons as described by [31] and implemented in the MNE-Python toolbox [28].We 

compared the baseline corrected data from all electrodes at all time points after the fixation onset to locate effects 

of emotional pictures (comparing Neutral vs HVHA and Neutral vs LVHA) and workload pictures (comparing 

NumbersAdd vs NumbersNone) in time and space. Clusters were identified as adjacent points in space 

(electrodes) and time (time point in the EEG segment) using a cluster-level threshold of p<.01 estimated via a t-

test (uncorrected). The cluster-level statistics were defined as the sum of t-values within every cluster. The 

correction of multiple comparisons was realized by calculating the 95th percentile of the maximum values of 

summed t-values estimated from an empirical reference distribution. T-values exceeding this threshold were thus 

considered as significant at p<.05 (corrected). The reference distribution of maximum values was obtained by 

means of a permutation test (randomly permuting the data points across the compared condtions for 1000 times). 

Thereby, we perform the statistics separately for the emotional and workload pictures. 

For each physiological modality, we specifically compare responses to pictures with numbers, and responses to 

neutral versus emotional pictures, since these types of pictures differ only with respect to the emotional or 

cognitive state that they are expected to induce, and are similar with respect to other, low-level stimulus 

characteristics. 

Results 

Figure 1 shows the traces, averaged across participants and picture type, for EDA (A), heart rate (B) and pupil 

size (C). Especially NumbersAdd stimuli elicit clear responses in all three modalities. 

Figure 2 presents the average of the response amplitude for EDA, heart rate and pupil size. Because our data 

were not normally distributed, non-parametric tests were used for statistical comparison. Wilcoxon signed rank 

tests indicated that EDA amplitude is significantly higher for high workload pictures, with numbers to add (Mdn 

= 0.379) than for low workload pictures, with numbers not to add (Mdn = 0.172). The same result was found for 

HR amplitude (Mdn = 3.707 for NumbersAdd and Mdn = 3.125 for NumbersNone) and for pupil size amplitude 

(Mdn = 0.411 for NumbersAdd and Mdn = 0.138 for for NumbersNone). Regarding emotional pictures, EDA 

amplitude is higher for low valence pictures (Mdn = 0.066) than for neutral pictures (Mdn = 0.032). There is a 

small trend in the same direction for high valence versus neutral pictures. No statistically significant differences 

were found in heart rate and pupil size amplitudes when comparing high valence pictures to neutral pictures, and 

when comparing low valence to neutral pictures. An overview and details of the statistical results are given in 

Table 1.  

For EEG, using the non-parametric cluster-based randomization test, we found one significant late parieto-

occipital electrode cluster for the comparison between the neutral pictures against the pictures with high valence 

(Figure 3A). This cluster comprised 15 electrodes with a difference from 164 ms to 912 ms after fixation onset. 

Similarly comparing the neutral pictures versus the pictures with low valence, we observed one significant late 

parieto-occipital electrode cluster (Figure 3B). The cluster comprised 17 electrodes with a difference from 160 

ms to 1000 ms after fixation onset. Comparing the NumbersAdd and NumbersNone pictures, we found one 

significant cluster over parieto-occipital electrode regions (Figure 4). The parieto-occipital comprised 12 

electrodes with a difference from 252 ms to 672 ms after fixation onset. 
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Figure 1. Response traces (average and standard error of the mean) time-locked to fixation onset for EDA (A), heart rate (B) 

and pupil size (C). Red traces represent HVHA pictures; blue LVHA; black Neutral; green NumbersAdd; yellow 

NumbersNone. 

Figure 2. Average response amplitude in response traces time-locked to (from left to right) HVHA, LVHA, Neutral, 

NumbersAdd and NumberNone pictures, for EDA (A), heart rate (B) and pupil size (C). Error bars represent standard errors 

of the mean. 

 EDA Heart rate Pupil size 

NumbersAdd vs. NumbersNone 𝐖 = 𝟏𝟐𝟏, 𝐩 =. 𝟎𝟎𝟔 𝐖 = 𝟔𝟓, 𝐩 =. 𝟎𝟒𝟑 𝐖 = 𝟏𝟒𝟕, 𝐩 =. 𝟎𝟎𝟕 

HVHA vs. Neutral W = 100, p = .098 W = 44, p = .733 W = −82, p = .879 

LVHA vs. Neutral 𝐖 = 𝟏𝟎𝟔, 𝐩 =. 𝟎𝟒𝟗 W = 50, p = .424 W = 66, p = .396 

 

Table 1. Statistics for comparison between stimulus types, for EDA, heart rate and pupil size. 
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Figure 3. Spatio-temporal dynamics for the emotional pictures. The plots show the topographic maps of the t-values that 

represent the difference comparing the neutral with the positive (HVHA) pictures in (A) and the neutral with the negative 

(LVHA) pictures in (B). Electrode clusters showing significant differences in the non-parametric randomization test, are 

indicated by filled white circles. In both comparisons, an extended late parieto-occipital cluster was found. The amplitudes of 

the FERPs were larger for the positive (HVHA) and negative (LVHA) pictures than for the neutral pictures.  

 

Figure 4. Spatio-temporal dynamics for the workload pictures. The plot show the topographic map of the t-values that 

represent the differences comparing the numbers not to add (NumbersNone) with the numbers to add (NumbersAdd). 

Electrode clusters showing significant differences in the non-parametric randomization test, are indicated by filled white 

circles. The non-parametric randomization test reveals an extended late parieto-occipital cluster. The amplitudes of the 

FERPs were larger for the NumbersAdd  compared to the  NumbersNone condition.  

Discussion 

We examined EDA, heart rate, pupil size and EEG related to fixations on stimuli that were expected to induce 

different levels of workload and types of emotion.  

For all three peripheral physiological measures, we found the expected increase when comparing high workload 

stimuli (NumbersAdd) to stimuli with the same visual appearance, but without an associated mental workload 

task (NumbersNone). The average EDA stimulus traces for emotional and neutral pictures showed the expected 

pattern with larger values for emotional (high arousal) pictures compared to neutral pictures. The heart rate 

patterns are roughly consistent with those reported in [5], where heart rate was examined in response to IAPS 

pictures without having participants move their eyes towards the pictures. They also found an acceleration 

starting at around 2 seconds for pleasant pictures, followed by a strong deceleration at around 3.5 seconds, 

whereas unpleasant pictures show more of a deceleration, and heart rate responses to neutral pictures were closer 

to those to pleasant compared to unpleasant ones. However, our statistical analyses on the overall amplitude did 

not show significant effects for heart rate – only for EDA the comparison between neutral and high valence, high 

arousal pictures reached significance. 

For the EEG fixation-locked dynamics, we found a late parieto-occipital cluster sensitive to pictures inducing 

high and low valence compared to neutral pictures. A similar effect was found for high versus low workload 

inducing pictures. These findings are consistent with earlier studies. Previous studies consistently find higher 

amplitudes in late components for high compared to low arousing affective pictures (where P300 and later slow 
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wave potentials elicited with affective pictures are often denoted as late positive potential or LPP) [32-34]. 

Concerning the high and low workload pictures in our study, high workload pictures are expected to induce 

arousal, attentional and working memory processes, which are processes that are associated with higher 

amplitudes in late parieto-occipital components [6,35]. Note that in our case, the participant finds out during the 

first fixation on a high workload picture that a mental task has to be performed, i.e., that the picture is 

particularly relevant. This is a different case than most EEG workload studies, in which stimuli such as beeps are 

usually associated with low rather than high P300 amplitudes. In these studies, high workload as e.g. induced by 

a double task, prevents participants to allocate much attention to the presented stimuli [36,37], which is 

consistent with a low P300.  

Performing a mental task (adding numbers) seems to induce immediate and stronger arousal compared to 

viewing pictures that may not have direct relevance to the particular participant, and are not related to any 

(upcoming) action. Arousal due to an upcoming, socially relevant emotional task can expected to be stronger 

than emotion induction through pictures [38]. Fixation-related physiology may especially be helpful in situations 

related to cognitive workload, e.g. determining whether operators are not only looking at, but are also cognitively 

processing information that is presented on a screen; or in situations involving strong, personally relevant 

emotions that are related to upcoming action. 

To bring fixation-locked physiology closer to applications, several steps are required. In following analysis, we 

will examine whether on an individual level, for a single fixation, a classification algorithm can estimate which 

of the five picture types an observer is looking at – i.e., identify an individual’s mental state using combined 

multimodal fixation locked measures. Combining modalities may aid to get a more strongly differentiating 

signal.  

For this first EDA, heart rate and pupil size fixation locked study, we wanted to heighten the chance that 

participants dwelled on a certain stimulus for some time, which is why we presented stimuli on different 

locations but sequentially, with only a short time of simultaneous presence on the screen. Figure 1 suggests that 

minimum gaze times of 4 to 6 seconds would suffice to obtain an undisturbed maximum signal. A more 

ecological experiment would entail the presentation of multiple stimuli on the screen at once, e.g. in an 

operational setting where an observer has to monitor and interpret different parts of a display. 
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