I am currently a PhD student in the Applied Neurocognitive Psychology Lab at the University Oldenburg and neuroscientist in the Applied Neurocognitive System Lab at the Fraunhofer Institute for Industrial Engineering.
My research investigates neuronal correlates associated with cognitive processes during emotional distraction using EEG, MEG and fNIRS.
I am interested in new approaches in signal processing as well as encoding and decoding approaches to better understand how our brain processes emotional stimuli during ongoing cognitive tasks not only in laboratory settings but also in our everyday life. Download my CV
MSc in Psychology, 2018
University of Vienna
BSc in Psychology, 2016
University of Vienna
Responsibilities include:
Responsibilities include:
In the past decade, theoretical models of modular architectures with cold cognitive and hot affective-emotional systems have been progressively revised [1-3]. Nowadays, these mechanisms are suggested to be interwoven [4-5] and even processed in shared underlying neurocircuitry (e.g., [1,3]). Particularly in naturalistic environments, we are confronted with complex, (socio-)emotional stimuli claiming attentional and working memory resources (e.g., a crying baby during home office or laughter in open-plan offices). However, the precise nature of emotion-cognition interactions is still subject to research [5-8]. Previous studies revealed detrimental effects of emotional distraction on cognitive processes [9-11] with strongest interference when cognitive load is low and distractors’ valence deviates from neutral [1,12]. Electroencephalography (EEG) is a technique that provides separable brain correlates for emotional and cognitive states. EEG research suggested the frontal alpha asymmetry (FAA) as a suitable correlate indicating emotional states [13-15] and the ratio of frontal theta (4 – 7 Hz) and parietal alpha (8 – 12 Hz) power to index cognitive load (workload (WL); [16-17]). Here, we investigate whether these correlates can capture interactions between cognitive control and affective-emotional distraction processes. More precisely, we are interested in how auditory distractors and their affective valence influence neurophysiological indices associated with valence and cognitive load (here working memory load, WML). We assume stronger detrimental effects (i) under low WML because of sufficient available resources to process emotional distractors fully, and (ii) for (potentially harming) stimuli with low valence due to a higher salience and relevance (cf., [1,18]).
In the past decade, theoretical models of modular architectures with cold cognitive and hot affective-emotional systems have been progressively revised [1-3]. Nowadays, these mechanisms are suggested to be interwoven [4-5] and even processed in shared underlying neurocircuitry (e.g., [1,3]). Particularly in naturalistic environments, we are confronted with complex, (socio-)emotional stimuli claiming attentional and working memory resources (e.g., a crying baby during home office or laughter in open-plan offices). However, the precise nature of emotion-cognition interactions is still subject to research [5-8]. Previous studies revealed detrimental effects of emotional distraction on cognitive processes [9-11] with strongest interference when cognitive load is low and distractors’ valence deviates from neutral [1,12]. Electroencephalography (EEG) is a technique that provides separable brain correlates for emotional and cognitive states. EEG research suggested the frontal alpha asymmetry (FAA) as a suitable correlate indicating emotional states [13-15] and the ratio of frontal theta (4 – 7 Hz) and parietal alpha (8 – 12 Hz) power to index cognitive load (workload (WL); [16-17]). Here, we investigate whether these correlates can capture interactions between cognitive control and affective-emotional distraction processes. More precisely, we are interested in how auditory distractors and their affective valence influence neurophysiological indices associated with valence and cognitive load (here working memory load, WML). We assume stronger detrimental effects (i) under low WML because of sufficient available resources to process emotional distractors fully, and (ii) for (potentially harming) stimuli with low valence due to a higher salience and relevance (cf., [1,18]).